ダム下流のアーマー化河床における粗度層内流速分布に関する現地観測と

昂祐	○松尾	学生会員	埼玉大学
規夫	田中	正会員	埼玉大学大学院
Habib	Saqib	学生会員	埼玉大学大学院
健志	今岡	非会員	埼玉大学

1~3 倍程度の河床の箇所を選定して観測を行った. 河床の骨格を形成する巨礫の間隔(以降、礫間隔) の異なる M 地点, N 地点, O 地点の 3 地点で行った (図-2). 礫間隔は M, N, O 地点で, それぞれ 0.9 倍, 1.5 倍, 2.5 倍であった. 田中³⁾によれば, 平板上の 半球背後における剥離域の再付着点距離は半径(半 球高さ)の 1.7 倍程度であり, その前後の距離によっ て特性が大きく変わることが想定されたためである.

現地では水路実験のような整った礫の配置が存在 しないため, 図-3のような礫によって遮蔽領域が作 られる空間を選定し、電磁流速計を用いて流速の測 定を行った(図-4).使用した電磁流速系は㈱ケネッ ク製の 「VMT2-200-04P 型」である. サンプリング は100Hzで1分間行った.測定は礫の中央測線上の A. 上流側の礫裏, B 側面の礫による加速域, C. 下 流側の礫の前面 の3点で行い, 測定した流速を平均 することにより粗粒化河床の時空間平均した流速分 布を得た.鉛直方向の測定に関しては、流速分布が 急激に変化する粗度層内と礫周辺高さでは細かく, 礫上では間隔を広げて計測を行った. 観測区間にお ける礫のデータを表-1に示す.ただし流れに対し上 流側の礫を F, 左岸側の礫を L, 右岸側の礫を R, 下 流側の礫をBとした、観測に使用した礫の一例を、 図-5 に示す.

1. 目的

河川上流では運搬される土砂による礫の侵食・堆 積により,動的に河川環境が保たれているが,ダム や堰などにより川の流れが阻害されると運搬される 土砂がせき止められ下流の河床が粗粒化する. 粗粒 化した河床では水生昆虫の多様度の低下や付着藻類 の異常繁茂に伴う景観の悪化、悪臭問題などの環境 面での問題が発生する.そうしたダム下流での対策 として,フラッシュ放流や土砂還元事業が行われて いる. 土砂還元を効率的に行うためには, 還元土砂 の移動に関与する河床付近の流れ場を把握する必要 がある.既往の研究により相対水深の小さい流れに おいては従来の対数分布則が成り立たず、粗度層で 指数分布、礫上で後流分布、直線分布またはS字分 布が成り立つことがわかっているが汎用的な知見に はなっていない¹⁾. また,環境調査を行う際に,調 査箇所の6割水深の高さを簡易計測することで水深 平均流速を求める場合がある2). これは流速分布に 対数則が成り立つことを前提として行っており、粗 粒化河川で正しく平均流速を評価しているかは不明 である.

以上を踏まえ、本研究では、1)河床における礫の配置と流速分布の関係、2)実験で得られた知見の実河 川への適用可能性、3)粗粒化河床における流速分布 と平均流速の関係、を明らかにすることを目的とし て水理実験と現地における流速観測を行った。

2. 現地における流速分布の観測

2015年10月二瀬ダム下流約2.7km地点の平瀬を対象として流速調査を行った.地点の粒度分布を図-1 に示す.現地の50%粒径は92mm程度である.相対 水深(水深/代表粒径相当の巨礫)が2~3程度,礫間距 離(巨礫の流下方向の礫長に対する巨礫の間隔)約

キーワード 流速分布 粗度層内流速 礫間隔 6割水深流速

連絡先〒338-8570 埼玉県さいたま市桜区下大久保 255 埼玉大学 TEL048-858-3564 E-mail: tanaka01@mail.saitama-u.ac.ip

図-2計測を行った地点

図-3 流速分布の計測線の位置概要

図−4 流速分布測定状況

M地点	F	L	R	В
長軸[cm]	36	22	23	49
短軸[cm]	34	12	15	22
厚さ[cm]	28	12	12	20
N地点	F	L	R	В
長軸[cm]	25	23	32	44
短軸[cm]	20	22	20	21
厚さ[cm]	22	15	23	24
O地点	F	L	R	В
長軸[cm]	30	21	21	39
短軸[cm]	22	20	17	23
厚さ[cm]	18	19	19	30

図-5 調査に使用した礫の一例(表 - 1の M 地点 R)

3. 現地実験に類似した条件での室内実験

現地の粗粒河床を模した水理模型を用いて流速分 布を求めた.実験には水路長 14.0m,水路幅 0.5m, 深さ 0.4m,最大流量2.5×10⁴(*cm*³/*s*)の水路を用い て行った.水路上端 2.5m の地点より小礫(平均粒径 16mm,標準偏差 5.3mm)を敷き,その上に大礫(平均 粒径 103mm,標準偏差 6.3mm)を流下方向の礫の長さ の 3 倍となるように千鳥配置で設置した.通水は相 対水深が 3 倍となる水深 12cm となるよう行った.

解析は上端から 6.3m の地点で PIV(Particle Image Velocimetry: 粒子画像流速測定法)を用いて行った. PIV 解析ではトレーサー粒子を投入した流れ場中に レーザーを照射し,可視化したトレーサー粒子の動 きをハイスピードカメラで撮影し,そのデータを画 像処理ソフトで解析することで流れ場の流速やレイ ノルズ応力を求めた.解析に用いた動画撮影カメラ には高速度カメラ「High Speed Digital Camera K - II」, 解析ソフトには,カトウ光研株式会社の2次元流体 化ソフトフェア「Flow Expert Ver1.2.6」,トレーサー を可視化するためのレーザーはグリーンレーザー 「PIV Laser」を使用した.PIV 解析は,図-6 に示す 5 断面で行い,時空間平均により,流速分布を求めた.

図−6 水理模型実験概要

(田中ら 1)から一部引用)

4. 水理実験と現地観測結果の比較・考察

図-7(a)-(c), **図-8**に、それぞれ、現地における 礫間隔ごとの流速分布,室内実験における流速分布 の計測結果を示す.はじめに(a)から(c)をそれぞれ 比較する.礫間隔の狭い(a)M地点では粗度層内で指 数分布, 礫上でS字分布もしくは対数分布に近い分 布形状を示すが、(b) N 地点、(c) 0 地点と礫間が 1.5 倍から 2.5 倍へと広くなるにつれ, 礫上層の流速 分布と礫層の指数分布を接続する水深が底面近くに なっているのがわかる.底面付近の流速も同様に礫 間隔が広くなる毎に大きくなっている. これらは大 礫の間隔が広いことで,礫上層と礫層の間で活発な 運動量の交換がなされていたことが原因として考え られる.また、巨礫の間に充填している中規模礫間 において生じる浸透流も無視することはできない. さらに、礫高付近では計測線毎に流速が異なってい る.これは礫頂点付近で生じた剥離流れによるもの であると推測できる.

次に室内実験により得られた各断面の流速分布を 比較する. L1~L3 までと L4・L5 とでは底面流速に 差が生じている. これは礫間の加速流により加速さ れたことが原因であると考えられる. このことから L3 と L4 との間に礫の後流の境界が存在することが 推察される. L5 においては流れの粗度による遮蔽効 果が及ばないことから指数分布的な流速分布を示し ていない.

L1~L3 は現地の礫裏・加速域に,L4・L5 は礫前 の流速分布に類似した傾向を示している.このこと から現地観測・室内実験で得られたデータを

(A, B, Cについて図 - 3 参照)

それぞれ平均したものは類似の意味を示すと考えられる.そこで、これらのデータに加え、Habibら⁴⁾ が行った既往の研究データを引用・利用して水理実 験と現地観測結果の比較を行った(図-9).比較に用いたデータは河床条件が室内実験に最も近い礫間隔 2.5倍のケースを用いた.Habibら⁴⁾の実験では礫間 の間隔が狭い Case1, Case1と本実験の礫間隔の中 間である Case2 が行われた.現地で得られたデータ

を平均化したものは粗度層の半分程度の高さまで指 数分布, それより上層はS字分布もしくは対数分布 のような分布形となっている. 巨礫の間隔において は、Case3 が本実験で行われた条件に最も近いが、 礫層内の指数分布の傾向は Case1 に最も類似してい る.水理模型実験における Case3 でははっきりとし た指数分布は底面のごく近傍に限られ、巨礫が原因 の指数分布は明確に確認できない. これらのことか ら粗粒化河床の乱流構造の発達においては大礫間に 充填された小・中礫が流れに大きな影響を与えるこ とが示唆される.現地では大礫と底面の礫の直径比 は2.5程度で、底面付近の影響を強く受け、底面礫 の下面付近から中央付近まで指数分布の流速分布が 形成されていると考えられる. これは山地河川の底 面の取り方,代表粒径の取り方の難しさを示してい る.こうした流速分布とそれに基づく真の底面せん 断力評価が還元土砂の移動評価に重要であることか ら, 礫の粒度分布を考慮した流速分布について, さ らなる研究が必要である.

図-9 現地観測と水理実験における流速分布の比較 (Case1, Case2 は Habib ら⁴⁾ より)

本観測において 6 割水深の高さで水深平均流速を とらえると、0.16m/s であった.これは本研究の平 均流速の 0.13m/s の 1.2 倍になり、過大評価してし まうことがわかる.本研究で礫層を含む水深平均流 速は底面から約 4 割の高さ、礫高から約 1 割の高さ になり、6 割水深とは大きく異なることを指摘でき る.底面のとらえ方、水深平均流速のとらえ方につ いて、一般化していくことも今後の課題である.

5. 結論・今後の課題

本研究により,実河川において乱流構造を評価す る場合,河床を構成する材料のうち大粒径だけでな く粒度分布に起因する大粒径と小・中粒径の比を評 価することが重要であることが示唆された.また, 平均流速の定義に用いられている6割水深流速は粗 粒化河川のような相対水深の小さい河川では流速を 過大評価してしまうことが示された.今後の課題と しては大粒径間に充填された小・中粒径の礫が流速 にどの程度影響を及ぼすか確かめる必要がある.

謝辞 本研究を実施するにあたり,河川財団・H26-27 年度河川整備基金(代表者:田中規夫)の支援を受 けた.八木澤順治准教授に計測器の使用方法などの ご指導をいただいた.記して謝意を表す.

参考文献

- Tanaka, N., Yoshizawa, Y., Habib, S., Boundary layer development in roughness layer at modeled armored gravel bed stream and the sand movement in the region, E-proceedings of the 36th IAHR World Congress, The Hague, the Netherlands, 2015.
- 2)川那部浩哉,水野信彦(監修),中村太士(編集):河 川生態学,講談社,pp.8-10,2013.
- 3)田中規夫:底面上の 3 次元ならびに 2 次元物体後方の組織的渦構造の変動特性, ながれ 10(2), 93-105, 1991.
- 4) Habib, S., Tanaka, N., Yoshizawa, Y., Turbulence characteristics in open channel gravel bed with small water depth relative to roughness elements height, Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol.72, No.4, 2016 (in press).