近接爆発荷重を受ける RC 梁の損傷評価に関する基礎的研究

防衛大学校 学生会員 〇西川 祐徳 正会員 永田 真 市野 宏嘉 別府 万寿博

1. 緒言

近年,世界各国で爆破テロや爆発事故が多発しており,省庁の 施設や原子力発電所などの重要施設に対しては合理的な耐爆設計 法が求められる.爆発荷重を受ける構造部材の簡易な応答解析手 法として,図-1に示すように等分布荷重が作用すると仮定した1 質点系モデルを用いて時刻歴応答解析を行う方法が提案されてい る¹⁾.しかし近接爆発を受ける場合は,構造部材に等分布荷重が 作用するという仮定が成立しないことが推測される.そこで本研 究は,RC梁に対する近接爆発実験を行うとともに,RC梁の損傷 評価に関する基礎的研究として,荷重分布特性を考慮した1質点 系モデルの提案を行い,その妥当性について検討したものである.

2. 実験概要と結果

写真-1 および図-2 に, それぞれ実験の概観および RC 梁の概要 を示す. RC 梁の寸法は幅 120mm, 高さ 180mm, 支点間距離 1100mm とした. 主鉄筋に D10 異形鉄筋, せん断補強筋に D6 異形鉄筋を 用い, 引張鉄筋比を 0.82%, せん断補強筋比を 0.5%とした. コン クリート圧縮強度は 27.1N/mm² である. 爆薬には C4 爆薬 376g を 用い, 爆薬位置は梁中央の上部に設置し, 爆薬の下端から梁上端 までの距離は 196mm とした. RC 梁は, 回転を許容する支点治具 で固定し, ピン支持に近い構造とした.

写真-2 に、爆発実験後の RC 梁の損傷状況を示す. 破壊性状は 小規模な表面破壊およびひび割れのみで、スポール破壊のような 局部的な損傷は生じなかった. 梁には軽微な曲げ変形が生じてお り、梁中央の残留変位は 6mm であった.

3. 荷重分布を考慮した等価1質点系モデルの提案

(1) 荷重分布および荷重継続時間の算定

米軍の耐爆設計マニュアルにおいて,爆薬からの距離および爆 風圧の入射角度を考慮して,圧力および単位面積当たりの力積を 算定する手法が提案されている²⁾.図-3および図-4は,その手法 を用いて梁の片スパンに作用する最大圧力および単位面積当たり の力積をプロットしたものである.梁軸方向の最大圧力および単 位面積当たりの力積の分布が与えられれば,梁全体に作用する最 大荷重Fおよび力積Iは,次式のように求められる.

 $F = 2B \int_0^{L/2} P(x) dx \qquad (1) \qquad I = 2B \int_0^{L/2} i(x) dx \qquad (2)$ ここに Pは最大圧力, iは単位面積当たりの力積, xは梁中央から

図-1 1 質点系モデル

写真-1 実験の概観

図-2 RC 梁の概要

キーワード 近接爆発,1質点系モデル,三角形分布荷重

連絡先 〒239-0811 横須賀市走水 1-10-20 防衛大学校建設環境工学科 TEL. 046-841-3810 E-mail:beppu@nda.ac.jp

の距離, BおよびLはRC梁の幅および支点間距離を示す.

ここでは、プロットデータを線形補完し、その面積から得られる 最大荷重 *F*₁および力積 *I*₁が等価となる三角形分布を仮定する.一 方、緒言で述べたようにこれまでの簡易的手法では、梁中央での最 大圧力および単位面積当たりの力積が梁全体に一様に作用すると 仮定するため、図中の破線で示すような形状となる.次に、爆発に より作用する荷重~時間関係を三角形パルスとしてモデル化する. ここで、荷重継続時間 *t*₄については次式により求められる.

 $t_d=2I/F$

以上の手順から,図-5 に示すような荷重分布形状に応じた最大荷重 F, 力積 I, 荷重継続時間 ta が求まる.

(2) 1 質点系モデルの提案

三角形分布の圧力が作用した場合に,RC梁の中央点と変位が等 しくなる等価1質点系モデルの提案を行う.ここでは,図-6に示 すバイリニアの抵抗関数を用いた.ばね係数*K*は次式から求めた.

ここに、*u_m*は荷重 *F* が静的に作用した場合の RC 梁の中央点における最大変位であり、三角形分布荷重の場合の最大変位 *u_{m1}*は、次式で表される.

 $u_{m1} = F_1 L^3 / 60 E I_a$

(5)

(6)

(7)

(4)

(3)

ここに, Eはヤング係数, Laは有効断面二次モーメントを示す。最大抵抗力 R は次式から求めた.

 $R_1 = 6M_p/L$

 $K=F/u_m$

ここに、Mpは降伏モーメントを示す.

1 質点系モデルの運動方程式は次式で表されるので、式(7)を用いて変位の時刻歴応答解析を行った.

 $K_{LM}M\ddot{u} + R(u) = F(t)$

ここに、Mは RC 梁の質量、uは RC 梁の中央点における変位、 K_{LM} は荷重質量係数(= K_M/K_L , K_M は質量係数, K_L は荷重係数)を示す.

RC 梁と1 質点系モデルの運動エネルギーを等価とすることで質量係数 *K_M*が求まり,外部仕事を等価とすることで荷重係数 *K_L*が求まる.なお荷重質量係数は,三角形分布荷重に対して *K_{LM1}=0.62*,等分布荷重に対して *K_{LM2}=0.78*となる.

4. 解析結果および考察

図-7 に,解析によって得られた RC 梁の中央点における変位~時間関係および実験で得られた残留変位との比較 を示す.残留変位は,三角形分布荷重の場合が 5.2mm,等分布荷重では 24.1mm であった. 実験結果と解析結果の 差は,三角形分布荷重が約 13%,等分布荷重が約 300%となり,荷重分布を三角形分布に近似したモデルの方が実 験の再現性が高いことがわかる.

5. 結言

本研究は, RC 梁に対する近接爆発実験を行うとともに,近接爆発による荷重分布を三角形分布に近似した 1 質 点系モデルを提案したものである.提案モデルにより実験結果の残留変位をある程度良好に再現できた.

参考文献

(1) John Biggs; Introduction to Structural Dynamics, McGraw-Hill Companies, 1964.1

(2) Department of Defense; UFC 3-340-02, Structures to Resist the Effects of Accidental Explosions, 2014.9

