2次元面外波動問題に対するイメージベース FEM・演算子積分時間領域BEM結合解法

群馬大学 大学院 理工学府 学生会員 〇市川 諒 群馬大学 理工学研究院 環境創生部門 正会員 斎藤 隆泰

1. はじめに

波動伝播解析のための有力な手法として有限要素法 (FEM)や境界要素法 (BEM) が広く利用されている.

FEM は,無限領域を含む波動解析は苦手であるものの, 非均質材料や,非線形問題の扱いは得意である.一方で, BEM は,無限領域を含む波動解析に威力を発揮するだけ でなく,解析領域の境界のみを離散化すればよく,プリプ ロセスは容易であるが,非均質材料や非線形問題の解析は 苦手である.したがって,それぞれの解析手法を結合し, 互いの利点を活かした数値解析を行うことで,より効果的 な解析が可能になる.

このような FEM・BEM 結合解法の研究は,古くから行 われているが,波動問題に対しては従来の時間領域 BEM の特性上,時間増分の設定によって解析が不安定になるた め,さほど解析例がないのが現状である.そこで,本研究 では従来法に比べ安定な新しい時間領域 BEM(演算子積分 時間領域境界要素法)¹⁾を用いた新しい FEM・BEM 結合解 法を提案する.特に,非均質材料のモデリングを容易にす るために,FEM にイメージベースモデリングを適用する.

以下では、定式化の概要について説明した後、数値解析 例を示すことで本手法の有効性について検討する.

2. 解くべき問題とイメージベースモデリング

以下では簡単のため,面外波動問題を対象とし,直交座標 系 (*x*₁, *x*₂),時刻 *t* に対し,面外変位 *u*₃(*x*, *t*) 等を単に *u*(*x*, *t*) 等と表記する.

非均質材料であり FEM で解くべき領域を Ω_F , 無限遠を 含む均質材料であり BEM で解くべき領域を Ω_B とし, 領域 Ω_B からの入射波 $u^{in}(x,t)$ による透過・散乱問題について 考える. 各領域 Ω_F , Ω_B にて面外変位 u(x,t) が満足する波 動方程式,及び結合境界 Γ での境界条件はそれぞれ次のよ うに与えられる.

$$\mu u(\boldsymbol{x}, t)_{,kk} - \rho \ddot{u}(\boldsymbol{x}, t) = 0 \tag{1}$$

 $u_F(\boldsymbol{x},t) = u_B(\boldsymbol{x},t), \quad q_F(\boldsymbol{x},t) + q_B(\boldsymbol{x},t) = 0 \quad (2)$

ここで, μ はせん断弾性定数, ρ は密度, () は時間に関する微 分, (), i は $\partial/\partial x_i$, $q(\mathbf{x}, t)$ は面外方向表面力を表す.式 (1) を各領域 Ω_F , Ω_B で満たす面外変位 $u(\mathbf{x}, t)$ を FEM・BEM

(a) (b) 図 1 解析モデル (a) コンクリートの X-線 CT 画像 (100×100) (b)2

結合解法で求める.本研究では,領域 Ω_F の対象として図 1(a)のようなコンクリートのX-線CT画像のbmp(画素 数:100×100)を採用し,デジタル画像の1画素(ピクセル) をFEMの1要素と整合させる.したがって,解析モデル の作成を図1(b)のような画像処理により行うことが出来 る.今回は,材料を2種類に判別できるよう2値化処理を

3. 有限要素領域に対する定式化

值化処理画像

行った.

まず,FEM の定式化を示す.全有限要素数を M_F とし,式 (1)を Galerkin 法で離散化する.例えば,四角形要素で離散化を行う場合,FEM における区分線形近似を用いた内挿関数 N_i (i = 1, ..., 4)を式 (1)に乗じ, Gauss の発散定理を用いると,式 (1) は次のように表せる.

$$\sum_{e=1}^{M_F} \sum_{j=1}^{4} \int_{S^e} \mu N_{i,k} N_{j,k} dS u_j^e + \sum_{e=1}^{M_F} \sum_{j=1}^{4} \int_{S^e} \rho N_j N_i dS \ddot{u}_j^e - \sum_{e=1}^{M_F} \sum_{j=1}^{4} \int_{\partial S^e} N_i N_j d\partial S q_j^e = 0$$
(3)

ここで, u_j^e, q_j^e はそれぞれ有限要素 e における j 番目の節 点変位,および節点表面力, ∂S は有限要素 S の縁を表す. 次に,式(3)に対して, Δt を時間増分,第nステップ目の 節点変位を $u_j^{e,n}$ とし,加速度 $\ddot{u}_i^{e,n}$ を後退差分近似すれば,

$$\sum_{e=1}^{M_F} \sum_{j=1}^{4} \int_{S^e} [(\Delta t)^2 \mu N_i N_j + \rho N_j N_i] dS \cdot u_j^{e,n} - (\Delta t)^2 \sum_{e=1}^{M_F} \sum_{j=1}^{4} \int_{\partial S^e} N_i N_j d\partial S \cdot q_j^{e,n} = \sum_{e=1}^{M_F} \sum_{j=1}^{4} \int_{S^e} \rho N_i N_j dS (2u_j^{e,n-1} - u_j^{e,n-2})$$
(4)

Key Words: イメージベースモデリング,有限要素法,境界要素法,時間領域結合解法,演算子積分法 〒 376-8515 群馬県桐生市天神町 1-5-1 群馬大学大学院理工学府 TEL, FAX- 0277-30-1610

I -39

となり、時間領域有限要素方程式を導くことができる.

4. 境界要素領域に対する定式化

次に,無限領域を含む領域 Ω_B に対し,放射条件の扱い が容易な BEM を適用することを考える.領域 Ω_B に対す る時間領域境界積分方程式は次のように書ける.

$$C(\boldsymbol{x})u(\boldsymbol{x},t) = u^{\text{in}}(\boldsymbol{x},t) + \int_{\Gamma} G(\boldsymbol{x},\boldsymbol{y},t) * q(\boldsymbol{y},t)d\Gamma_{\boldsymbol{y}} - \int_{\Gamma} S(\boldsymbol{x},\boldsymbol{y},t) * u(\boldsymbol{y},t)d\Gamma_{\boldsymbol{y}} \quad (5)$$

ここで、 $C(\mathbf{x})$ は自由項²⁾, $G(\mathbf{x}, \mathbf{y}, t)$, $S(\mathbf{x}, \mathbf{y}, t)$ はそれぞれ 2次元面外波動問題における時間領域基本解および対応す る二重層核である.また、* は時間に関する畳込み積分を 表す.従来法では、式(5)の計算は、時間増分 Δt が小さ い場合に数値解が不安定になることが知られている.そこ で、式(5)の畳込み積分の離散化に、Lubich が提案した演 算子積分法 (CQM: Convolution Quadrature Method)³⁾ を適 用することで数値解を安定させる.さらに、空間の離散化 に区分線形近似を用いた近似基底 ϕ_i による Galerkin 法を 適用し、境界 $\Gamma \in M_B$ 個の境界要素で離散化すれば、第 nステップにおいて次の方程式を得る.

$$\sum_{j=1}^{M_B} \int_{\Gamma} \phi_i(\boldsymbol{x}_j) d\Gamma_{\boldsymbol{x}} \left\{ \left[\frac{\delta_{ij}}{2} + B_i^0(\boldsymbol{x}_j) \right] u_j^n - A_i^0(\boldsymbol{x}_j) q_j^n \right\}$$
$$= \int_{\Gamma} \phi_i(\boldsymbol{x}) d\Gamma_{\boldsymbol{x}} u_i^{\text{in},n}(\boldsymbol{x})$$
$$+ \sum_{j=1}^{M_B} \int_{\Gamma} \phi_i(\boldsymbol{x}_j) d\Gamma_{\boldsymbol{x}} \left\{ \sum_{k=1}^{n-1} A_i^{n-k}(\boldsymbol{x}_j) q_j^k - \sum_{k=1}^{n-1} B_i^{n-k}(\boldsymbol{x}_j) u_j^k \right\}$$
(6)

ここに、 δ_{ij} はクロネッカーのデルタ、 A_i^m, B_i^m は影響関数である.以上より、離散化された時間領域境界積分方程式が示せた.

5. 数值解析例

図 1(b) のような非均質材料による透過・散乱問題を考え る.ここで、領域 Ω_F は材料 1,2、領域 Ω_B は材料 1 のみで 構成される.本研究では、イメージベースモデルを作成す るために図 1 のコンクリート画像を用いたが、非均質領域 Ω_F を作成し、解析の有用性を確認することに主眼を置い ているため、実際のコンクリート中の波動伝播と解析パラ メータの詳細が乖離していることに注意されたい.なお、 解析で与える入射波は平面波とし、次式で与えた.

$$u^{\rm in}(\boldsymbol{x},t) = u_0(1 - \cos 2\pi\alpha)$$

$$\alpha = \begin{cases} \frac{c}{\lambda} \left(t - \frac{x_1 + a}{c}\right) & \text{for } (0 \le \alpha \le 1) \\ 0 & \text{for otherwise} \end{cases}$$
(7)

ただし, c は波速, u_0 は振幅, λ は波長, a は正方領域 Ω_F の代表長さを示す. 解析では,入射波の振幅を $u_0 = 1.0$,

図 2 全変位場のスナップショット (a) n = 400 (b) n = 600 (c) n = 800 (d) n = 1000

波長を $\lambda/a = 0.66$, 材料 1, 材料 2 における波速比,密 度比をそれぞれ $c_2/c_1 = \sqrt{2}$, $\rho_1/\rho_2 = 1.0$ とした.また,1 波長に対して十分な要素,節点を配置できるよう有限要素 数 $M_F = 10000$,境界要素数 $M_B = 400$ の要素で離散化し た.このとき,境界要素は図 1(b)の赤色点線境界となる. ただし,時間増分 $c_1\Delta t/a = 0.003$,総ステップ数 n = 1024とした.図 2(a)-(d)は,それぞれステップ数 n = 400,600, 800,1000 における全変位場を示している.図 2(a)-(b)より, 非均質材料中の材料 2 を伝播した入射波は,材料 1 のみを 伝播した場合に比べ,先に伝播する様子が見て取れる.ま た,音響インピーダンスの関係により,材料 1 では,散乱 波の位相が入射波と比べて逆転していることがわかる.さ らに,図 2(a)-(d)より,入射波や材料 2 により生じた散乱 波は,結合境界 Γ で反射することなく無限遠へ伝播してい ることも見て取れる.

まとめ

面外波動問題における FEM・BEM 結合解法の定式化を 行った. イメージベースモデリングを用いて,実際のコン クリート画像を解析モデルに繰み込んだ FEM・演算子積分 時間領域 BEM 結合解析を行い,結果を考察することで本 手法の有効性を示した.

今後は、3次元問題への拡張および大規模問題に対する 高速化手法の開発に取り組む予定である.

参考文献

- 福井卓雄・斎藤隆泰:Lubichの演算子積分法における高速多 重極法,日本シミュレーション学会論文誌,小特集:境界要 素法の新展開, vol.28 No.3, pp.17-22, (2009).
- 2) 小林昭一編著: 波動解析と境界要素法, 京都大学学術出版会, (2000).
- Lubich, C. : Convolution quadrature and discretized operational calculus I and II, *Numer.Math* 52, pp.129-145 and pp.413-425, (1988).