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1. Introduction  

Management of groundwater resource systems is 

necessary in many countries to assure a sustainable water 

supply at the national, regional, and community levels. In 

Afghanistan, the author’s homeland, the static water level is 

decreasing yearly, especially in expanding population areas, 

where groundwater usage is extremely high. For example, 

the groundwater level in Kabul City has decreased by about 

10 meters over the last decade, mainly due to unplanned 

pumping by private users concentrated in that area. A linear 

programming (LP) technique based on the simplex method 

is applied to the groundwater management problem to 

obtain maximum benefits, forming an optimal management 

policy under hydrological constraints. 
 
2. Groundwater Drawdown in Multiple Well Systems 
  The partial differential equation for a steady flow to the 

well in a radial coordinate system takes the form1) 

 

 

 

where h is the hydraulic head around the well. The boundary  

conditions at the well are r = rw, h = hw, and at some distance 

r = R, h = H. The distance R, where the drawdown is zero or 

negligible, is called the radius of the influence circle. 
Integrating Eq.(1) from r to R with the boundary conditions, 

 

 

where s(r) is the drawdown at distance r, Qw is the pumping 

rate and T =KB is the transmissivity of the aquifer.  

When wells are spaced at distances smaller than their 

radius of influence R, they affect each other’s drawdown as 

shown in Fig.1. 

 
 
 

 
 
 
 
 
 
 
 
 
  
 

 

 
Because the equation for flow in a confined aquifer is 

linear in h (r), the principle of superposition is applicable. In 

a confined aquifer in which N wells are operating at 

constant pumping rates, letting Qi denote the pumping rate 

at point ( xw,i , yw,i 
), and Ri the influence circle of wells, the 

total drawdown at location ( xj, yj ) is 

 
 
 
where the distance r between a pumping site and observation 

point is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 illustrates the cones of depressions by three wells, 

each pumping at constant rates of Q1 = 1500, Q2 = 2000 and 
Q3 = 1500 m3/day from a subsurface confined aquifer of 

thickness B = 5 m and hydraulic conductivity K = 1×10-3
 m/s 

(transmissivity T = 5×10-3 m2/s). The contour lines in Fig.2 

indicate the drawdowns mutually influenced due to 

simultaneous pumping by three wells. 
 
3. Application of the Linear Programing Technique to 

Groundwater Management 
Generally, the optimization problem is characterized by 

an objective function, stating the quantity to be maximized 

or minimized and its functional dependence on decision 

variables, and by constraints on the decision variables 

among which an optimum is to be found. In the 

groundwater management problem, the objective function 

and constraints of the pumping rates Qi of N wells are the 

decision variables, and the total amount of pumping is the 

objective function to be maximized. The constraints 

demand that at M locations ( xj, yj ) the drawdowns sj must 

be smaller than some given maximum drawdown sj,max to 

 

 

Fig.1 Composite drawdown curves by multiple wells.
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Fig.2 Cones of depression for three pumping wells.
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avoid problems such as drying up neighboring wells or 

excessive land subsidence in the area due to pumping. The 

problem is now described as:     

 

 
 
 
 
The functional relationship between drawdowns and 

pumping rates is given by the analytical formula Eq.(3). 

The constraints for drawdown in Eq.(4) are rewritten as 
 
 
 
 
  
The matrix aij is called the influence matrix and gives the 

change in drawdown at location j if the pumping rate at well 

i is increased by one unit. The optimization problem is 

linear as long as the objective function and constraints are 

linear (i.e., linearity of the system). Therefore, the 

optimization model of Eq.(4) takes the form of a standard 

linear optimization problem that can be solved by the 

simplex algorithm2). The standard form of linear 

optimization is given by the expressions 
 
 
 
 
 
 
in which Z is the objective function, xi are the decision 

variables (i =1,・・・ , n ), and pi are the benefit coefficients. The 

system of inequalities can be changed into a system of 

equations by introducing non-negative slack variables, and 

optimum solution can be found as a feasible solution by 

exchanging basis variables and non-basis variables until all 

the coefficients of the objective function become no 

negative values3). As an application of LP to the 

groundwater management problem, the multiple well 

pumping system shown in Fig.2 is considered. The 

locations of the three pumping wells are, taking the top-left 

corner of the region as the coordinate origin, ( xw, 1 , yw, 1) = 

(100 m,75 m) , ( xw, 2 , yw, 2) = (250 m,175 m) and ( xw, 3 
, yw, 3) = 

(375 m,125 m). At three sites, Site1 (150 m ,150 m), Site2 

(250 m ,75 m) and Site3 (300 m ,150 m), maximum allowable 

drawdowns are prescribed as s1 ≤ 2.5 m, s2 ≤ 2.5 m and s3 ≤ 

3.0 m. The radii of influence are assumed to be Ri = 500 m 

for every well. The objective is now to pump as much water 

as possible without violating the constraints.   

If these data are substituted into Eqs.(5) and (6), the 

optimization problem is expressed by the tableau of a 

canonical form shown in the next. (the unit of aij is s/m2) 

 
 

m=3 
n=6 

     : 
 

 
 

 

 
 

 

Since the last row has no negative elements, we conclude 

that the solution corresponding to the fifth tableau is 

optimal. Therefore, the optimal pumping rates are Q1= 

0.03154 m3/s = 2720 m3/day, Q2 = 0, Q3= 0.03089 m3/s = 2670 

m3/day and total amount of feasible pumping is 5390 m3/day.  

The best policy is to stop pumping Q2 and increase Q1 and 
Q3 up to the optimal values. The cones of depressions for 

optimum pumping operation are depicted in Fig.3. 
 
 
 
 
 
 
 
 
 
 
 
 
4. Summary 
  An LP technique was applied to the groundwater 

management problem to find optimum pumping operations. 

The technique can be employed in groundwater resource 

system planning and analysis in many developing countries.  
 
References: 1) Bear J.: Hydraulics of groundwater, (Mc-Graw 
Hill, 1979) p.304-306.  2) Kinzelbach W.: Groundwater 
Modeling, Development in Water Science 25 (Elsevier, 1986) 
p.188-220.  3) Luenberger D.G.: Introduction to Linear and 
Nonlinear Programming (Addison-Wesley, 1973), p.27-63. 

35.04 0 -17.10 1 0 -0.7207 0.3379

18.44 0 -1.360 0 1 -0.7346 0.2962

0.3882 1 0.8418 0 0 0.01433 0.04299

-0.6118 0 -0.1582 0 0 0.01433 0.04299

1 0 -0.4882 0.02854 0 -0.02057 0.00965

0 0 7.642 -0.5263 1 -0.3553 0.1184

0 1 1.031 -0.1108 0 0.02232 0.03925

0 0 -0.4569 0.01746 0 0.00175 0.04889

a1 a2 a3 a4 a5 a6 b
54.56 50.29 25.23 1 0 0 2.5

38.34 51.26 41.79 0 1 0 2.5

27.09 69.78 58.74 0 0 1 3.0

-1 -1 -1 0 0 0 0 

1 0.6158 0 0.03183 -0.0192 0 0.03154

0 0.6617 1 -0.0292 0.0416 0 0.03089

0 14.232 0 0.8532 -1.921 1 0.3312

0 0.2774 0 0.00263 0.0223 0 0.06243

)4(

sintConstra

MaximizefunctionObjective

),,1(0

:

:

),,1(max,

1

)( 1

NQ

MQQ

Q

ii

jNj

i
i

j

Z

ss

N
















)6(
1

with )
)()(

(ln)
2

(
22

,, ii

i
j

wjwj yyxx

R
T

ai


 

)5(),,1(max,
1

MjQ j

N

siji
i

a 


0

)7(

,1

0

),,1(

),(

1

1

toSubject

Maximize

 

















j

i

ijji

n

j

n

i

x nj

b

mx

xpZ

iba

ii

Fig.3 Cones of depression for optimum pumping rates.
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