1.29

長岡工業高等専門学校	学生会員	○小池	耕太郎
長岡工業高等専門学校	非会員	井山	徹郎
長岡工業高等専門学校	正会員	村上	祐貴

1. はじめに

道路や橋梁等の RC 床版内部の点検に用いられる非 破壊検査において、点検の容易さ、コスト、精度等を 総合的に勘案すると、打音点検は実務に適した手法で ある.しかしながら、打音点検は点検者の聴覚に依存 する手法のため, 点検結果には点検者の経験や主観の 影響を多分に含む.また,現状の打音点検では,欠陥 の存在する位置(深さ)までは判定できない.

そこで本研究では, RC 床版の打音点検の高精度化, 効率化を最終目的とし,比較的深い位置に人工欠陥を 埋設したコンクリート試験体を作製し, 打撃を加えた 際のコンクリート表面の加速度や音圧の時刻歴波形に 関して、欠陥の有無および深さの関係について実験的 検討を行った.

2. 実験概要

1試験体及び実験パラメータ

試験体の形状, 寸法を図-1 に示す. 試験体は, 900mm×900mm, 高さ 180mm の床版を模擬した試験体 である. コンクリートの配合表は表-1に示す通りであ り、セメントには早強セメントを使用した.実験パラ メータは、コンクリート内部の空洞を模擬した人工欠 陥の有無および人工欠陥の埋設深さである.人工欠陥 は、直径 20mm、厚さ 5mm の円盤状に加工したスチレ ンボードであり、埋設深さは試験体上面から 30mm, 70mm, 110mm および 150mm の 4 水準である. 埋設深 さ 110mm, 150mm の試験体はそれぞれ埋設深さ 70mm, 30mm と同一試験体であり, 試験体を裏返して試験を行 った. なお, 埋設深さ 70mm, 30mm の試験体の打撃面 は打設面である.

2. 2 測定方法

図-2 に示すように、試験体端から 50mm の位置を直 径 50mm の単管パイプで支持した. 打撃の入力は、イ ンパルスハンマー(周波数範囲:0kHz~8kHz,測定範囲 2200N)を用いて行い、試験体に5回打撃を加えたデー

キーワード 非破壊検査,打音法,内部欠陥,時刻歴応答特性

人工欠陥 350 006 200 350 d:欠陥深さ (mm) 30 350 200 350 70 900 110 150 ----単位:mm 図-1 試験体の形状・寸法 表-1 コンクリート配合表 圧縮強度 単位量(kg/m³) W/C(%) 7k ∙ W セメント:C 細骨材:S 粗骨材:G 混和剤 N/mm² 835 1040

タの平均を実験結果とした. マイクロフォン(周波数 範囲:10Hz~20kHz)は、打撃箇所から水平方向に 20mm、 鉛直方向に 20mm の位置に配置し, 打撃の際に発生す る打音を収録した.また,打撃の際に発生するコンク リート表面の振動を,加速度センサー(周波数範囲: 2Hz~10kHz)を用いて受信した.加速度センサーは,試 験体上面中心に厚さ 0.4mm の両面粘着テープを用いて 貼り付けた.

打撃箇所は、図-2に示すように試験体端から 50mm 内部の位置から水平, 垂直方向に線を 100mm 間隔で引 き、それらの交点である.なお、試験体中心部に対し て打撃を加える際は,加速度センサーの設置位置を試 験体中心部近傍とした. 各センサーからの受信信号は サンプリング周波数 12.8kHz, データ数は 1024 として 収録した.

3. 実験結果

60

155

258

図-3 に健全および欠陥深さの異なる試験体中心部 (E5)に打撃を加えた際の加速度及び音圧の時刻歴波形 を示す. なお, 加速度はインパルスハンマーの最大打 撃力, 音圧はインパルスハンマーの最大電圧で正規化 した.加速度,音圧ともに欠陥深さが浅い程,最大振

連絡先 〒940-0817 新潟県長岡市西片貝町 888 番地 長岡工業高等専門学校 TEL. 0258-32-6435

幅が大きくなる傾向にある. 図-4 に正規化した加速度 及び音圧の最大振幅比と欠陥深さの関係を示す. ここ で、最大振幅比とは、各試験体の加速度および音圧を 健全試験体の最大加速度及び最大電圧で除した値であ る. 欠陥深さが 30mm の加速度の最大振幅は, 健全試 験体と比較して約31倍大きい.音圧の場合においても, 加速度に比べて感度は低下するものの、健全試験体に 比べて約5倍最大振幅が大きい.また、最大振幅は欠 陥位置が深くなるに従い、急激に低下した.加速度の 場合, 欠陥深さが 70mm の時点では, 最大振幅比は健 全試験体に比べて大きいが、110mmの時点では有意な 差異は確認できない. 図-5は図-3に示した加速度お よび音圧の時刻歴波形をそれぞれの最大値で正規化し て対数表記したものである. なお, 負側の加速度も絶 対値を示している. 同図に示すように、加速度振幅の 減衰は欠陥の有無や埋設深さの影響が認められなかっ

た.

4. まとめ

本研究によって得られた知見を以下に示す.

- (1)本実験の範囲では、欠陥部に打撃を加えた場合、欠陥深さ 30mm までは、健全試験体と比べ加速度、音圧ともに最大加速度が増加した。
- (2) 欠陥の有無および深さによって加速度の減衰特性 には明確な差異は認められなかった.

参考文献

 浅野雅則,鎌田敏郎,国枝稔,六郷恵哲:コンクリート内部欠陥の寸法および深さと打撃特性値の定 量関係,コンクリート工学年次論文集,Vol.23,No.1, pp.589-594,2001