都市内鉄道の地震時システムリスク解析と

システム強化策の定量評価

東京都市大学	学生会員	○髙橋優輔
東京都市大学	フェロー会員	吉川弘道

1 はじめに

大都市の鉄道路線は複雑に入り組んだ線状施設と なっている。そのため、地震などの災害により一箇 所でも寸断されると、機能全体が停止することがあ る。一方で、その路線の複雑さからこれまで地震が 路線網に与える被害リスクの定量化を行うことは非 常に重要であり、これまでも様々な着目点において 研究・解析がなされ、比較検討が行われている。

本研究は、地震時システム解析の一つとして、路 線網の組み合わせによるリスク値の定量評価を行い、 路線網における冗長性の考察を行う。システムリス ク解析の流れを以下の図1に示す。

図1 解析の流れ

2 システムモデルの概要

多くの線状施設は、単純なモデルを組み合わせた モデルとして考えることができ、かつ一方向での導 通性解析が重要である。このため、地震時システム リスクを考察するために、図2に示すような、単純 な3つの基本モデルにて考察することが重要である。

すなわち、以下の3段階で考えるものである。

(a) 直並列混合モデル

(a) 基本直列モデル

各構造物を一つの路線で繋いだシステムモデルで ある。このモデルでは、いずれか一つの構造物が損 傷すると、そのモデル全体における路線としての機 能が停止してしまう。

(b) 直列・並列混合モデル

前述の直列モデルに平行路線を追加して、機能を 強化させたシステムモデルである。いずれか片方の 路線において損傷が発生した場合でも、もう片方の 路線がその機能を補完するため機能全体に冗長性を 持たせることが可能となる。

(c) ラダーモデル

平行路線に両線をつなぐ接続路線を挿入したもの である。このモデルでは中間に接続路線が入ること

キーワード:地震時システムリスク解析、直列モデル、直列・並列混合モデル、ラダーモデル、冗長性 連絡先:〒241-0816 神奈川県横浜市旭区笹野台 3-56-7 髙橋優輔 TEL.070-5013-8878 E-mail: fukuen105@hotmail.co.jp で路線の損傷に応じた旅客の輸送経路を確保できる ことが可能になるため、より冗長性を高められる。

当然のことながら、基本直列モデル⇒直列・並列 混合モデル⇒ラダーモデルの順番にて、線状システ ムが強化され、地震リスクは低減する。ここで大切 なことは、上記の順番にて費用も多く必要とするこ とであり、リスクの低減(冗長性の増大)を定量的 に考えることが重要である。

3 都市内鉄道への適用

(1)対象路線

解析の対象路線として渋谷〜横浜間を走行する鉄 道各線及びJR南武線を選定した。それぞれの路線を 図3に示す。ここでは、渋谷駅を始点、横浜駅を終 点として考え、一方向での旅客輸送(機能維持)を 考えるものである。

渋谷~横浜間を結ぶメインルートとして、東急東 横線、JR 湘南新宿ライン及び山手線と東海道線(京 浜東北線を含む)を乗り継ぐ3路線が存在する。また、 東急東横線、湘南新宿ラインと東海道線を縦に結ぶ 経路として JR 南武線が走行している。

図3 路線図

(2)解析条件

上記(1)の鉄道路線において、図4に示す5つのル ートを設定し、解析パターンを4種類設定した。対 象路線のモデルを図5に、各ルートの概要を以下の 表1に、解析パターンを表2に示す。

次に、地震時における被災対象として、盛土・橋 梁・軌道・電車線などのコンポーネント、およびコ ンポーネントを構成するユニットを定義する。本解 析では、ユニットは最大で148箇所とした。コンポ ーネントは合計 17箇所とし、それぞれにおいて耐力 中央値及び機能停止日数を設定した。各コンポーネ ントの耐力中央値及び機能停止日数を以下の表3及 び表4に示す。各コンポーネントのPGV及び機能停 止日数は、吉川・高澤らの論文(2011)及び佐藤の論文 (2013)に用いられているものを一部引用した。

また、各パターンにおける、ルートの利用者割合 を表5に示す。利用者割合は各鉄道会社より発表さ れている一日平均利用者数及び各駅の一日平均乗降 客数を元に算出した。

解析に用いる地震動は 1703,1923 関東地震(M8.0) とし、同シナリオ地震における、ルート数の違いに よるリスク値の変動を確認する。解析に用いるシナ リオ地震及びリスク値の諸元を以下の**表 6** に示す。

なお、構造物の応答標準偏差を全ての構造物で 0.33、応答の標準偏差を 0.50 とし、応答は全て独立 とした。

表1 5ルートの概要

ルート(1)	東急東横線 (渋谷-東横線武蔵小杉-横浜)
ルート2	JR山手•東海道線(渋谷-大崎-品川-川崎-横浜)
ய டி	東急東横線−JR南武線−東海道線
12-13	(渋谷-東横線武蔵小杉-川崎-横浜)
	湘南新宿ライン
N-r4	(渋谷−大崎−横須賀線武蔵小杉−横浜)
	東急東横線−JR横須賀線
ルートら	(渋谷-東横線武蔵小杉…横須賀線武蔵小杉-横浜)

表2 解析パターン

パターンNo.	解析ルート
P1(直列)	モート
P2(並列)	ルート①・ルート②
P3(ラダーA)	ルート①・ルート②・ルート③
P4(ラダーB)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

	一般構造物						
	平地	切土	盛土	高架橋	架道橋	橋梁	トンネル
分類	Α	В	С	D	Е	F	G
無被害	-	0	0	0	0	0	0
中破	-	79.69	26.56	37.19	37.19	58.44	95.62
大破	-	-		85.00	85.00	106.25	148.75
崩壊	-	106.25	63.75	106.25	106.25	159.37	191.24
		電車線				軌道	
	地上·高架	駅構内	地下		地上	トンネル内	高架
分類	Н	I	J	分類	L	М	N
無被害	0	0	0	無被害	0	0	0
大破	58.44	37.19	79.69	大破	37.19	79.69	58.44
崩壊	85.00	53.12	116.87	崩壊	53.12	116.87	85.00
	優	亭車場構造物	勿	その他			
	高架	地下	地上	踏切設備			
分類	0	P	Q	K			
無被害	0	0	0	0			
中破	37.19	95.62	21.25	_			
大破	85.00	148.75	42.50	37.19			
崩壊	106.25	191.24	53.12	53.12			

表3 各コンポーネントの PGV

表4 各コンポーネントの最大機能停止日数

				一般構造物			
	平地	切土	盛土	高架橋	架道橋	橋梁	トンネル
分類	Α	В	С	D	Е	F	G
無被害	-	0	0	0	0	0	0
中破	-	3	3	3	3	3	4
大破	_	-	1	30	30	30	35
崩壊	-	60	45	110	110	110	150
		電車線				軌道	
	地上·高架	駅構内	地下		地上	トンネル内	高架
分類	Н	Ι	J	分類	Ц	М	N
無被害	0	0	0	無被害	0	0	0
大破	10	10	10	大破	10	10	10
崩壊	30	30	30	崩壊	30	30	30
	停	亭車場構造物	勿	その他			
	高架	地下	地上	踏切設備			
分類	0	Р	Q	К			
無被害	0	0	0	0			
中破	3	4	1	_			
大破	30	35	7	10			
崩壊	110	150	30	30			

表5 各パターンにおける利用者比率

	P1	P2	P3	P4
ルート ①	1.000	0.472	0.433	0.300
ルート②	I	0.528	0.485	0.385
ルート3			0.082	0.057
ルート④	I	I		0.178
ルート(5)			-	0.080

	表 6	シナリ	リオ地	震の	諸元
--	-----	-----	-----	----	----

	1/03,1923 関東地	丧		
ᄴᄛᅷᅮ	マグニチュード	8.0		
地辰祖儿	年間発生確率	0.001		
地震リスク学会	機能停止日数期待値	80.204		
地長リヘリ祖儿	年超過確率	0.111		

なお、コンポーネントの耐力中央値は地表面にお ける最大速度(PGV)とし、解析の際は各ユニットに おける地盤増幅率によりその値を除した工学的基盤 面の最大速度(PBV)を使用し、距離減衰式は安中式 (速度)を用いた。

また、表層地盤増幅率は地震ハザードステーション「J-SHIS」にて用いられている、速度に対応した 値を参考に、構造物ごとに設定した。

なお解析にあたり、旅客の流動は渋谷→横浜の方 向のみとした。

(3) 解析結果

解析により得られた、各パターンにおける地震イ ベントリスク曲線を以下の図6に示す。また、年間 機能停止日数期待値を以下の表7に示す。

図6 地震イベントリスク曲線

表	7.	パター	-ン毎の	機能停⊥	上日数其	朋待値

·*///	年間	475年再現期間
ハダーノ	停止日数期待值[日]	停止日数期待値[日]
P1	1.79	69.0
P2	1.28	53.2
P3	1.30	54.1
P4	1.27	52.5

次に、解析より得られた D 曲線を以下の図 7 に示 す。D 曲線は復旧曲線のうち、停止日数ごとの復旧 率を示したものである。

図7 復旧曲線(D曲線)

次に、施設の弱点を求める指標となるボトルネッ ク指標を表7に示す。代表として、P1及びP4のパ ターンにおける上位10カ所のボトルネック指標を以 下の表8に示す。

表8 ボトルネック指標

(a) F	21
-------	----

32 60

30, 30

26.03

26.03

24.98

22.16

20.52

20.45

20.38

20 23

P1		P4
高架橋(大倉山~菊名) 高架橋被害	51.49	渋谷駅 地上駅構造被害
綱島駅 高架駅構造被害	50.62	高架橋(大倉山〜菊名) 高架橋被害
高架橋(大倉山〜菊名)A 高架橋被害	49.46	横浜駅 駅構内架線被害
元住吉駅 高架駅構造被害	47.80	横浜駅 地上軌道被害
高架橋(武蔵小杉~元住吉)B 高架橋被害	47.56	横浜駅 地上駅構造被害
高架橋(元住吉~日吉)A 高架橋被害	47.22	横浜駅 地下駅構造被害
武蔵小杉駅 高架駅構造被害	46.97	武蔵小杉駅 高架駅構造被害
高架橋(新丸子~武蔵小杉) 高架橋被害	46.80	高架橋(新丸子~武蔵小杉) 高架橋被害
新丸子駅 高架駅構造被害	46.64	新丸子駅 高架駅構造被害
多摩川駅 高架駅構造被害	43.99	鶴見川橋梁(東海道線) 橋梁被害

4 考察

渋谷~横浜間の鉄道路線に対し、地震時システム リスク解析を適用した。解析により得られた結果に 対する考察を以下に記す。

- ・地震リスク曲線より、複数路線が存在する P2、P3、 P4 は直列である P1 より機能停止日数が短縮され ているが、この3パターン内ではわずかな差が見 られるものの、機能停止日数期待値に大きな差が 見られない。
- ・年間機能停止日数及び475年再現期間機能停止日 数機能停止より、2 路線解析である P2 のパターン は3路線解析のP3より機能停止日数が小さくなっ ている。この結果より、ラダーモデルが必ずしも 機能停止日数を短縮するモデルになるとは言えな いことがわかる。
- ・D曲線より、迂回路線が存在する P2~P4 は P1 よ りも同機能停止日数における復旧率が高い。
- ・また、P2~P4の復旧率には大きな差が見られない が、設定路線が多い P4 は復旧率が一番高い。P2 と P3 を比較すると、45 日~110 日では P2 の復旧 率が高いが、それ以外ではP3の復旧率が高いこと がわかる。

- ·P3では南武線が追加されたことにより、南武線の 構造物が復旧するまでの期間が反映されたことで P2よりも復旧率が下がる期間があると考えられる。
- ・ボトルネック指標より、P1の場合は上位に入って いない横浜駅の構造物が P4 では上位を占めてい ることがわかる。故に、1路線のみの場合はボトル ネックとならない箇所も、複数路線が乗り入れる ことでボトルネックとなりうる場合がある。
- ・P1 と P4 の指標値を見ると、P4 の上位 10 箇所の指 標値は全て P1 のおよそ半分となっている。このこ とから、複数路線を設定することで機能が冗長性 を有し、リスク値を減少させることがわかる。

<謝辞>

本研究の一部は、(財)国土技術研究センター研究 開発助成(平成25年度募集)にて実施したものであり、 ここに謝意を表します。

<参考文献>

- 1) 大峯秀人ほか:リスクファイナンスのための線状 施設の地震リスク評価,土木学会論文集 F6(安全 問題) Vol67, No.1, PP14-26, 2011
- 2) 吉川弘道・高澤尚子ほか:線状施設の震災後機能 停止期間に関するシステムリスク解析,土木学会 論文集 F4(建設マネジメント) Vol65.No.2.PP299-309.2009
- 3) 静間俊郎・中村孝明ほか: 地震損傷相関を考慮し た施設群の機能停止評価,土木学会論文集 A Vol67, No.2, PP92-108, 2011
- 4) 静間俊郎ほか:鉄道輸送機能に関する地震時復旧 曲線の利用性の検討, JCOSSAR 2011 論文集, A 論文
- 5) 佐藤梢平:線状施設の地震時システムリスク解析 -広域路線への適用-,平成25年度卒業論文, pp29-31, 2013
- 6) 中村孝明, 宇賀田健: 地震リスクマネジメント, 技法堂, 2009, pp190-200
- 7) 独立行政法人 防災科学技術研究所 地震ハザードステーション J-SHIS http://www.j-shis.bosai.go.jp/
- 8) JR 東日本ホームページ 各駅の乗車人員 http://www.jreast.co.jp/passenger/
- 9) JR 東日本ホームページ 路線別ご利用状況 2009 年度~2013 年度 http://www.jreast.co.jp/rosen_avr/pdf/2009_2013.pdf
- 10) 東京急行電鉄ホームページ 2013 年度乗車人員 http://www.tokyu.co.jp/railway/data/passengers/