遠方場近似を利用した き裂開閉口に伴い発生する高調波の3次元解析

群馬大学大学院理工学府 学生会員 ○金井翔平 群馬大学大学院理工学府 正会員 斎藤隆泰 東京工業大学大学院情報理工学研究科 学生会員 丸山泰蔵 東京工業大学大学院情報理工学研究科 正会員 廣瀬壮一

1. はじめに

近年,超音波非破壊検査の分野では,閉じたき裂の検出に 高調波と呼ばれる非線形波動を利用する試み(非線形超音 波法)が提案され、話題となっている.しかしながら、非線形 超音波法の定量化にはその高調波の発生機構を明らかにす る必要がある. そこで、本研究では、遠方場近似を利用して、 き裂開閉口に伴い発生する高調波をシミュレーションする ことを行う.遠方場近似の導入により、遠方での弾性波の振 る舞いを精度良く、効率的に求めることが可能となる.以下 では、まず、演算子積分時間領域境界要素法1)を用いてき裂 開口変位を求める.次に,基本解の遠方場近似を利用するこ とで、き裂からの遠方散乱場を求めることで、高調波の発生 について確認する.

2. 解くべき問題

図1(a)のような3次元等方均質な無限弾性体V中のき裂 による入射波の散乱問題について考える. 今,き裂は, x1-x2 面内にあると仮定し、x3軸はき裂面に直交するものとする. 通常のき裂では、き裂の上下面 S^+, S^- (以下、上付き±はそ れぞれき裂の上下面を示す)の接触を考慮せず,表面力成分 $t_i^{\pm}(\boldsymbol{x},t)$ は常にゼロとする.しかしながら,本研究では,き 裂に対し,後に説明する接触境界条件を与えることで,き裂 面が閉じた場合, すなわち $t_i^+ = t_i^-$ なる場合をも考慮する.

3. 演算子積分時間領域境界要素法

文献1)を参考に、接触を考慮した場合の表面力境界積分 方程式は次のように表される.

$$t_i(\boldsymbol{x},t) = t_i^{\text{in}}(\boldsymbol{x},t) + \int_S W_{ij}(\boldsymbol{x},\boldsymbol{y},t) * \phi_j(\boldsymbol{y},t) dS_y \quad (1)$$

ここで、 $\phi_i(\boldsymbol{y},t)$ はき裂開口変位、* は畳込み積分を表す. また, $t_i^{\text{in}}(\boldsymbol{x},t)$ は入射波 $u_i^{\text{in}}(\boldsymbol{x},t)$ に対応する表面力成分, W_{ij}(x, y, t) は 3 次元弾性波動問題における基本解の 2 階 微分を含む超特異核である.式(1)に正則化を施した式に、 時間に関しては演算子積分法を,空間に関しては区分一定 要素を用いて離散化することで、き裂開口変位 $\phi_i(\boldsymbol{x},t)$ を求 めることができる.

4. 接触境界条件

き裂の開閉口を表現するために、本研究では、簡単のため、 図2のような separation と stick の2つの接触状態について

図2 接触境界条件.

考慮する. separation 状態は、図2上のように、向かい合うき 裂面 S⁺, S⁻ が非接触, すなわち開口状態であるとして定 義する. これより, separation 状態における接触境界条件は 次のように与えられる.

$$t_1 = t_2 = t_3 = 0 \tag{2}$$

一方、stick 状態は、図 2下のように、向かい合うき裂面 S^+ 、 S⁻ が接触している状態として定義する. この stick 状態で は S⁺, S⁻ での u₁, u₂ 変位の不連続状態を許容している. これより, stick 状態において規定される接触境界条件は次 のように与えられる.

$$\phi_3 = 0, \ \phi_1 = \phi_2 = 0 \tag{3}$$

ここで, $\dot{\phi}_i$ は $\dot{\phi}_i = \partial \phi_i / \partial t$ である. き裂における接触境界 条件は, 各時刻において, separation と stick のいずれかの状 態を取り得ると考える. 接触境界条件が遷移する場合の遷 移条件を図2中央に矢印と共に示す.

5. き裂による散乱波の遠方場近似

超音波非破壊検査では、通常、散乱波は欠陥から十分遠方 で受信することとなる. そのため, 散乱波の解析に遠方場近 似を導入することで、遠方での散乱波を短時間で容易に評 価することが可能となる²⁾

Key Words: 超音波非破壊検查, 非線形超音波法, 時間領域境界要素法, 遠方場近似, 高調波 〒 376-8515 群馬県桐生市天神町 1-5-1 群馬大学大学院理工学府 TEL. 0277-30-1610 今, 観測点 *x* を, き裂から十分遠方に設定し, 座標原点を き裂近傍にとると, 観測点 *x* とき裂上の点 *y* との距離 *r* は 次式のように近似できる.

$$r = |\boldsymbol{x} - \boldsymbol{y}| \approx |\boldsymbol{x}| - \hat{\boldsymbol{x}} \cdot \boldsymbol{y} \tag{4}$$

ここで, $\hat{x} = x/|x|$ である. 式 (4) を散乱波 $u_i^{sc}(x,t)$ に対す る積分表現式に代入し, 整理すれば³⁾, 散乱波の遠方場の縦 波成分 $u_L^{sc;far}(x,t)$ は次式のように求めることができる.

$$u_L^{\rm sc;far}(\boldsymbol{x},t) = \frac{1}{4\pi |\boldsymbol{x}|} \Omega_L\left(\hat{\boldsymbol{x}}, t - \frac{|\boldsymbol{x}|}{c_L}\right)$$
(5)

ここで, 散乱縦波の振幅 $\Omega_L(\hat{x}, t - |x|/c_L)$ は次式のように 表される.

$$\Omega_L\left(\hat{\boldsymbol{x}}, t - \frac{|\boldsymbol{x}|}{c_L}\right) = \frac{c_T^2}{c_L^3} \left[\left(\frac{c_L^2}{c_T^2} - 2\right) \delta_{jk} + 2\hat{x}_j \hat{x}_k \right] \\ \times \int_S n_k(\boldsymbol{y}) \dot{\phi}_j \left(\boldsymbol{y}, t - \frac{|\boldsymbol{x}|}{c_L} + \frac{\hat{\boldsymbol{x}} \cdot \boldsymbol{y}}{c_L}\right) dS_y$$
(6)

ここで、 c_L, c_T は縦波および横波の波速であり、 δ_{ij} はクロネッカーデルタである.式(1)で求めた、き裂開口変位 $\phi_i(\boldsymbol{x}, t)$ を用いることで、き裂による散乱遠方場の縦波成分 $u_L^{\rm sc;far}(\boldsymbol{x}, t)$ を求めることができる.

6. 数值解析例

以下,数値解析例を示す.ただし,以下の数値解析では,ポ アソン比 $\nu = 0.25$ とした.このとき,縦波,横波の波速比 は $c_L/c_T = \sqrt{3}$ となる.

(1) 通常のき裂による弾性波動散乱解析

まず、本手法の計算精度を確認するために、接触境界条件 を考慮しない通常のき裂に対し、散乱解析を行った.ここで は、入射波 $u_i^{in}(x,t)$ を平面段波(縦波)とし、図1(b)のよう な原点中心、半径aの円形き裂に対し、垂直入射させる.図 3 は演算子積分法により求めたき裂開口変位 $\phi_i(x,t)$ を用 いて式(6)の散乱振幅をプロットした結果を示している.比 較のため、Hirose らによる従来の時間領域境界要素法を援 用して求めた結果³⁾も示している.両者は良く一致してお り、解析を正しく実行できていることが確認できた.

(2) 接触境界条件を考慮したき裂による弾性波動散乱解析

次に,接触境界条件を考慮したき裂に対し,散乱解析を 行った.ここでは,入射波 $u_i^{in}(x,t)$ を正弦平面波 10 波(縦 波)とし,原点中心,1辺の長さが 2aの正方形き裂に対し, 垂直入射させる.図4は式(6)の後方散乱振幅をプロットし た結果を示している.また,参考のため,通常のき裂に対す る結果も示している.図4より,接触境界条件を考慮した場 合の結果は,通常のき裂に対する結果に比べて,波形が歪ん でいることが見て取れる.一方,図5は図4における結果の フーリエスペクトルを示している.ただし,縦軸は入射波の

中心周波数に対応する無次元化波数 $k_L a = 2\pi$ でのフーリ エスペクトル amp₀ で正規化していることに注意されたい. いずれの場合においても, $k_L a = 2\pi$ でスペクトルのピーク が卓越していることがわかる. しかしながら, 接触境界条件 を考慮した場合の結果に着目すると, $k_L a = 4\pi$, 6π におい てそれぞれ, 2次, 3 次高調波を確認することができる.

7. まとめと今後の課題

演算子積分時間領域境界要素法を用いて接触境界条件を 考慮した場合のき裂開口変位を求めた. 遠方場近似を利用 することで,き裂からの遠方散乱場を求め,かつ,高調波の 発生について確認した. 今後は分調波が発生するようなき 裂の動的モデルの検討, 異方性材料中の高調波の発生につ いて行う予定である.

参考文献

- 斎藤隆泰・金井翔平・丸山泰蔵・古川陽・廣瀬壮一: 演算子 積分時間領域境界要素法を用いた接触境界条件を考慮した3 次元クラックによる弾性波動散乱解析,計算数理工学論文集, Vol.14, pp.31-36 (2014).
- 小林昭一編著: 波動解析と境界要素法, 京都大学学術出版会 (2000).
- Hirose, S. and Achenbach, J. D. : Time-domain boundary element analysis of elastic wave interaction with a crack, *Int. J. Numer. Meth. Eng.*, Vol.28, pp.629-644 (1989).