圧縮載荷試験による鋼トラス橋格点部の終局状態に関する研究

	(独)土木研	F究所 正会	員
早稲田大学	学生会員	○丸翔一	
早稲田大学	正会員	笠野英行	
早稻田大学	フェロー会員	依田照彦	
首都大学東京	フェロー会員	野上邦栄	
首都大学東京	正会員	岸祐介	

1.背景及び目的

2007年8月に米国ミネソタ州ミネアポリス市 I-35W橋の落橋事故が起きた。この橋は鋼トラス 橋であり、落橋の原因の一つとして格点部ガセット プレートの脆弱性があげられる¹⁾。日本においても 腐食等によるトラス橋の劣化事例が報告されている。 2007年6月には木曽川大橋で、斜材が腐食によ り劣化し、破断に至った状態で発見された。また、 秋田県の本荘大橋や、大分県の筒井大橋などでも、 腐食の劣化による損傷や破断が確認された。このよ うに、日本でも鋼橋の腐食等による劣化は進行して おり、維持管理の体制を強めることは非常に重要と なっている。そのためにも、鋼橋の終局状態におけ る力学的挙動を調べ、適切な維持管理を行うことが 必要である。

既存の研究では、引張やせん断を受ける鋼トラス 橋格点部のガセットプレートの挙動に関する研究は 行われてきたが、圧縮によるガセットプレートの終 局状態に関しての研究は少ない。そのため、笠野ら は実橋梁の格点部を利用した載荷試験を基に圧縮に よるガセットプレートの終局状態に関しての理論式 の検討を進めてきた²⁰。本研究では旧銚子大橋を参 考に、格点部を作成し、圧縮載荷試験を行った結果 について報告する。

圧縮力を受けるガセットプレートの耐荷力を算出 するための、理論式は式(1)、(2)のとおりであ り、斜材から伝達される圧縮力に抵抗する断面及び 部位に関する仮定は図1に示すとおりである。せん 断を受ける断面をボルト列に沿った青色の断面とし、 圧縮を受ける部位として赤い斜線で囲っている位置 を定義している。

本研究の目的は、この理論を実験にて確認し、圧 縮載荷によるガセットプレートの挙動をひずみ計及 び変位計を用いて調査することである。

•	· T		JH 7 J		
	(独) 🗄	上木研	究所	正会員	村越潤
	(独) 🗄	上木研	究所	正会員	高橋実
	(独) 🗄	上木研	究所	正会員	本多弘明
	(独) 🗄	上木研	究所	正会員	田代大樹

太多 引明

$$\mathbf{R} = Rc + \frac{1}{\sqrt{3}}\sigma_y Agv \tag{1}$$

$$Rc = \frac{\pi^2 EI}{le^2} \tag{2}$$

ここに、R:圧縮力を受けるガセットプレートの耐力

Rc: 圧縮力を受ける部分の耐力
σ_y: 鋼材の降伏応力
Agv: せん断に抵抗する全断面積
E:鋼材のヤング係数
I:断面2次モーメント
1e: 座屈換算長

図1 理論式における圧縮力に対する抵抗断面及び部 位

2.研究対象モデル

本研究の対象としているのは旧銚子大橋格点部を

参考に、作成した格点部である。本研究で使用され た格点部を図2に示す。旧銚子大橋での斜材とガセ ットプレートの接合ではリベットが用いられていた が、格点部の作成上の都合から、接合には図3に示 すように普通ボルトを採用した。リベットと力の伝 達方法の差異を少なくするためボルトは摩擦式では なく支圧式のボルトを用いている。 トの力学的挙動を調べる。A 位置には北側、南側合わ せて6 個の1 軸ひずみゲージ、またガセットプレー ト裏側にも同数配置されているため計12個、B 位置 には北側、南側合わせて12個の3軸ひずみゲージ が貼り付けられている。

図2 新規格点部

図3 ボルト接合の様子

図4に実際の格点部載荷試験の概要図を示す。本 研究では図4の手前側が北側、奥側が南側としてい る。この格点部を図に示すように赤い矢印方向に圧 縮斜材のみ圧縮載荷し、ガセットプレートの挙動を ひずみ計及び変位計を用いて確認した。本研究ではB 位置に設置した3軸ひずみゲージと、A 位置に設置し た1軸ひずみゲージのデータを基にガセットプレー

3. 載荷試験結果

1)荷重-変位曲線

以下の図5に圧縮載荷試験で得られた荷重一変 位曲線を示す。今回の実験では接合部分に支圧式 ボルトが採用されていたため、実験中に多くのボ ルトにすべりが発生した。

図5 荷重—変位曲線

図5に示すように、弾性領域内において複数回 のボルトすべりが発生した。一方、約2500kN から3000kN 付近で荷重一変位曲線が緩やか になってきているため、ガセットプレートが部分 的に降伏し始めていることが確認できる。また、 この載荷試験での最大荷重は3427kNとなり、 理論式から算出した最大荷重は3492kN とな った。

2) 圧縮載荷による斜材端部の座屈

載荷試験により図4に示す A 位置では図6に示 すような局部座屈が生じた。局部座屈の形状は、A 位置北側では凸になり、南側では凹となった。

図6 斜材端部で発生したガセットプレートの座屈 (正面北側)

A位置と図4に示す自由辺位置での1軸ひずみ ゲージ計測結果を比較する。それぞれの計測結果 は以下の図7から12に示す。この結果より圧縮 を受ける部位では自由辺と比べて軸方向の力が卓 越していることがわかる。

図7 A位置での1軸ひずみ計測結果(北側)

A 位置での1 軸ひずみ計測結果(南側) 図 8

自由辺位置1での1軸ひずみ計測結果(北側)

図 9

自由辺位置2での1軸ひずみ計測結果(北側) 図11

自由辺位置1での1軸ひずみ計測結果(南側) 図10

図12 自由辺位置2での1軸ひずみ計測結果(南側)

3) ボルトに沿って発生したせん断

B 位置の3軸ひずみゲージの測定結果よりせん 断方向を算出した。せん断方向を可視化したもの を図13に示す。この結果より、理論の通り外側 のボルト列に沿った方向にせん断が生じたことが 確認できた。

またこのB位置でのせん断ひずみを算出し、荷 重-せん断ひずみ関係を図14に示す。この図より 約2500から3000kN付近でせん断降伏が 始まっていることが確認できる。また、南側の結 果を以下の図15に示す。南側でも同様に250 0kNから3000kN付近で降伏していることが 読みとれる。

図14 B位置での荷重-せん断ひずみ関係(北側)

図15 B位置での荷重一せん断ひずみ関係(南側)

4.まとめ

今回の実験では、圧縮を受ける部位での座屈及 びせん断を受ける断面でのせん断降伏を確認する ことができた。また、せん断を受ける断面での3 軸ひずみゲージより算出したせん断方向より、せ ん断面はほぼ理論通りの方向になっている。よっ て、圧縮力を受けるガセットプレートの耐荷力を 算出するための理論式と、実験により得られたガ セットプレートの力学的挙動が整合することが確 認できた。

5.参考文献

- 1) 笠野英行,依田照彦:米国ミネアポリス I-35W橋の崩壊メカニズムと格点部の損傷評価,土木学会論文集 A vol. 66 No. 2, pp312-323, 2010.
- 2) H. Kasano, T. Hirayama, T. Yoda, K. Nogami, J. Murakoshi, T. Enomoto, D. Tashiro: Strength Verification of Steel Truss Gusset Plates Subjected to Compressive Force, Proceeding of the 4th international Symposium on Life-Cycle Engineering (IALCCE 2014), Paper 241, 2014.