# 平膜状浸漬型 MBR においてレーザー変位計による曝気中の平膜の振動パターンの検討

# 1. はじめに

現在,優れた処理技術として MBR(膜分離活性汚 泥法)が推進されている.安定した処理水の供給や, 施設のコンパクト化が可能であるが,ファウリング が問題視されている.可逆的なファウリングの抑制 策として,平膜の振動による物理洗浄が考慮される ため,本研究ではレーザー変位計により,平膜の振 動パターンについて検討を行った.

## 2. 実験概要

## 2-1. 実験装置

実験装置の概略図を図 1 に示す. 容積が 500mm ×500mm×850mm のアクリル水槽に水道水を満たし, 230mm×280mm×600mm の平膜を固定するパイロッ トスケールの膜ユニット及び有効膜面積が 0.1m<sup>2</sup> の 平膜モジュール,また,散気管を浸漬させた. 散気 管はΦ1.5mm,穴の数が 13 個でそれぞれ 14mm 間隔 の塩化ビニル製の管を使用した.また,水槽の正面 にレーザー変位測定計を設置した.

本研究で用いた平膜は, ABS 樹脂のろ板の上にス ペーサが貼られており, その上に, 塩化ポリエチレ ン製で公称孔径 0.4µm,の膜シートが貼られている.



| 東京都市大学  | 学生会員 | ○酒井 駿治 |
|---------|------|--------|
| 東京都市大学院 | 学生会員 | 佐々木哲哉  |
| 東京都市大学  | 正会員  | 長岡 裕   |

#### 2-2. 膜の振動の測定

レーザー変位測定計(LJ-V7080, KEYENCE 社製) を用いて平膜の振動の測定を行った.平膜の中心部 の一部を切り取り,ろ板を露出させ,レーザーの光 が膜部とろ板部を同時に照射するように水槽前面に 設置した.膜部とろ板部から代表点を1点ずつ選定 し,解析点とした.膜シートのみの値は膜部とろ板 部の測定値の差分を使用した.Airfluxは0.06m/s, 0.13m/s, 0.20 m/s の3段階に設定し,サンプリング 周期は1000Hz である.Airfluxは1)より算出した.

$$F = Q/A \tag{1}$$

F: Airflux(m/s), Q: 曝気量(m<sup>3</sup>/s), A: 曝気流路面積(m<sup>2</sup>)

レーザーは曝気による気泡通過時に、気泡を感知 してしまい、出力された数値の中に異常値が見られ てしまった.そこで、変位が-0.1mm~0.1mmの範囲 外のものと、出力値の 0.001sec 前との差分の値が |0.001|mm以上のものを異常値とみなし、0.001sec 前 と同値で補間する方法を行った.

#### 3. 測定結果及び考察

Airflux0.06m/s時のろ板と膜シートの変位量の経時 変化を図2に示す.ろ板は曝気中に曝気流路側と循 環流路側の速度水頭差により圧力水頭差が生じたた め,曝気停止状態の変位から曝気流路側に挙動した. また,膜シートは曝気中の挙動の要因は不明である が,曝気中に膜とろ板の間に空気が入り込み,膜モ ジュール上部に取り付けられたノズルから気泡が出 ていく現象が見られた.そのため,曝気終了後に空 気が逆流し曝気流路側に膨張したことが考えられる. しかし,ノズルに取り付ける吸引チューブの有無に よって結果が異なることが考えられるが,ノズルの 状態を確認していないため,明確な要因は不明であ る.また,全Airfluxで同様の傾向が見られた. 各 Airflux における膜シート及びろ板の変位の平均 値及び変動値を図 3 に示す.変位の平均において, ろ板は Airflux が大きくなるにつれて増加していく傾 向となったが,膜シートは Airflux による変位の違い は見られなかった.また,ろ板の変位の平均値は膜 シートの約 3 倍程度となった.変位の変動ではろ板 及び膜シート共に Airflux が大きくなるにつれて増加 していく傾向となり,全 Airflux において同値となっ た.

また,曝気中の膜シート,ろ板及び,液相流速 の測定データのパワースペクトルを両対数目盛で表 した図を図4に示す.ろ板では全Airfluxで約1Hzに おいてピークが見られた.液相流速のパワースペク トルと比較すると,類似した傾向が見られず,ろ板 の振動周期は曝気による液相流速に依存しないとい うことがわかった.膜シートのみではAirfluxをあげ るにつれて,ピークが高周波数で見られた.このこ とから曝気による液相流速の上昇に伴い,膜のみの 振動周期が大きくなっていくことがわかった.しか し,液相流速のパワースペクトルでは,気泡の影響 によるノイズが混じってしまった影響で,ろ板の振 動周期との関係を評価するのが困難となった.

## 4. まとめ

レーザー変位測定計による平膜の変位及び振動周 期と液相流速の関係から得られた知見を以下に記述 する.

1)膜シートのみの変位の平均値は Airflux による違い は見られなかったが、変動の値は Airflux が大きくな るにつれて、増加傾向にあることがわかった.振動 周期に関しては、流速の増大に伴い、高周波数での 振動になることがわかった.

2)ろ板において、変位量の平均値と変動値は共に、 Airflux が大きくなるにつれて、増加傾向にあること がわかった.また、曝気中は曝気流路側と循環流路 側の速度水頭差より、圧力水頭に差が生じたことが 考えられたため、流路側への膨張する挙動が見られ た.振動周期は全 Airflux で約 1Hz となり、液相流速 による影響は見られなかった.

