圧縮応力を受けるコンクリートの AE 発生特性に基づく損傷パラメータの推定

新潟大学大学院	学生会員	〇山岸	俊太朗
新潟大学	正会員	鈴木	: 哲也
新潟大学	正会員	森井	: 俊広
熊本大学大学院	正会員	大津	政康

1. はじめに

コンクリート構造物の長寿命化策の精緻な検討には,損傷度の定量化が不可欠である.既往の研究より損傷の進行したコンクリート・コアでは,力学特性と損傷パラメータの関係が明らかとなっている¹⁾.

本報では、コンクリートの圧縮応力下での AE 発生挙動のモデル化により得られる AE パラメータと損傷パラメ ータλを用いてコンクリート損傷度評価を試みた結果を報告する.

2. 解析手法

2. 1 損傷パラメータλによる力学特性評価

損傷パラメータ λ は応力-ひずみ曲線の初期接線弾性係数 E_0 と割線弾性係数 E_c の関係(図-1)より導出され,(1) 式より定義されている.

$$\lambda = \frac{E_c}{E_0 - E_c}$$

2. 2 AE 発生挙動のモデル化

コンクリートの圧縮応力下における AE 発生挙動は,確率過程論 における定式化が可能である. AE の発生総数を N, ひずみレベル を ε とし, AE 発生確率関数を $f(\varepsilon)$ とすると, ε から ε + $d\varepsilon$ へのひずみ 量の増分に対し,以下の(2)式を導くことができる.

$$f(\varepsilon)d\varepsilon = \frac{dN}{N}$$
(2)

AE 発生確率関数 $f(\varepsilon)$ に対して,次のような指数関数曲線を仮定する.

 $f(\varepsilon) = \alpha \cdot \exp(\beta \varepsilon) \tag{3}$

ここで、 $\alpha \ge \beta$ は定数である.

(3)式でβはひずみレベルεでの AE 発生頻度を反映し,βの正負に より AE の発生確率が異なるモデルになっている(図-2).βが正 ならば、ひずみレベルの低い段階で AE 発生確率関数が低いことを 意味し、コンクリート材料が健全な状態であることが評価できる. βが負ならば、ひずみレベルの低い段階で AE 発生確率関数が高い ことを意味し、損傷が進行した材料であると評価することができる.

3. 圧縮強度試験

実験は AE 計測を導入した圧縮強度試験を実施し、供試体の破壊 過程に発生する AE を検出した.計測装置は SAMOS (PAC 社製) である.計測は供試体の側面部にひずみゲージおよび AE センサを 設置して行った.しきい値は 42dB とし、60dB の増幅をプリアンプ

キーワード コンクリート, AE (Acoustic Emission), 損傷力学, 圧縮強度試験

連絡先 〒950-2181 新潟市西区五十嵐 2 の町 8050 番地 新潟大学大学院 TEL.025-262-6303 E-mail: f12e016c@@mail.cc.niigata-u.ac.jp

図-1 応力 - ひずみの関係

(1)

4. 結果および考察

4.1 $\lambda \ge \beta$ を用いたコンクリート損傷度評価

コンクリート・コアの損傷度評価には、 λ 値と β 値の関係 からコンクリートを「損傷」、「中間的損傷」、「健全」に区分 し評価している(図-3).評価範囲「損傷」は、 λ >1.061 かつ β <0.000 のコンクリート・コアを示す.評価範囲「健全」は、 $\lambda \leq 1.061$ かつ $\beta \geq 0.033$ のコンクリート・コアである.「中間 的損傷」は、評価範囲「損傷」と「健全」の条件に該当しな いコンクリート・コアである.健全の評価範囲は、損傷を与 えていないコンクリート・コアを用いて設定した.評価範囲 の設定では、コンクリート・コアを用いて設定した.評価範囲 の設定では、コンクリート物性のばらつきを考慮し、 λ およ び β の正規分布から平均値と標準偏差を用いて決定した.検 討の結果、損傷と評価されたコンクリート・コアは実構造物 であることが確認され、モデル試験は、中間的損傷から健全 に評価された(図-4).

4. 2 P波速度計測によるコンクリートの物性評価

本研究では、 $\lambda \ge \beta$ による損傷度評価とコンクリート物性 (P 波速度)の関係を考察した.無損傷サンプルでは、P 波 速度 3,632~3,850 m/s (平均値:3,778 m/s)を記録し、モデ ル試験 ($\lambda \le 1.061$)では 3,710~4,080 m/s (平均値:3,857 m/s) となった.モデル試験 (損傷: $\lambda > 1.061$)では 3,370~4,080 m/s (平均値:3,725 m/s) となり、実構造物では 1,680~3,971 m/s (平均値:3,103 m/s) となった.検討の結果を図-5 に示す. 図-5 では、プロットしたデータ間の P 波速度を補完するた めクリギング²⁾を行った.同図から評価範囲「健全」では P 波速度 3,700~4,100 m/s の範囲であるのに対して、評価範囲

図-3 $\lambda \geq \beta$ の関係 (モデル図)

 $\lambda \geq \beta$ の関係 図-4 5 4,100 損傷 中間的損傷 3,900 \cap 3,700 4 3,500 3,300 0 3 0 3.100~ 2,900 2 2,700 0,900 2,5001 2,300 0 健全 2,1000 1.900 -0.01_β -0.07 -0.04 0.02 0.05 1,700

P波速度(m/s)

図-5 コンクリート損傷とP波速度の関係

「損傷」では 1,700~3,500 m/s の範囲であった. P 波速度にばらつきがあるものの, 損傷と評価されたコンクリート・コアの P 波速度は健全のものと比較して低く, 健全から損傷にかけて P 波速度の低下が確認された.

5. おわりに

本研究では、圧縮強度試験に AE 計測を導入し、圧縮破壊過程における AE 発生挙動とひずみレベルの関係から 評価値 β を算出し、損傷力学における損傷パラメータλとの関係からコンクリート損傷を評価した.検討の結果、 評価範囲「損傷」の P 波速度は、健全と比較して最大で 2,400 m/s 低下していることが確認された.このことから、 λとβによるコンクリート損傷度評価と P 波速度との関係が示唆された.

参考文献

- Suzuki, T., Ogata, H., Takada, R., Aoki, M. and Ohtsu, M.: Use of Acoustic Emission and X-Ray Computed Tomography for Damage Evaluation of Freeze-Thawed Concrete, Construction and Building Materials, 24, pp. 2347-2352, Dec. 2010.
- 2) Hans Wackernagel 著,青木謙治監訳:地球統計学,森北出版株式会社, 2004.