土構造物の形状が津波エネルギー減衰効果に及ぼす影響

防衛大学校建設環境工学科 学〇田中悠斗 正 宮田喜壽 正 多田 毅 正 平川大貴

1. はじめに

東日本大震災の被害を受けて、土構造物の耐津波性能を向上させる重要性が指摘されている¹⁾. 土構造物に 対する耐津波要求性能として、構造物の高さ以下の津波に対しては、津波を止める性能が、構造物の高さを超 える津波に対しては、津波の遡上距離あるいは所定の地点への到達時間を短縮させる性能が考えられる.本研 究では、津波が土構造物を超える場合の性能について一連の検討を始めている.本文では、越流流量が一定の 条件で、土構造物の形状が津波エネルギーの減衰効果に及ぼす影響を模型実験で調べた結果を報告する.

2. 実験の概要

本研究では、図-1に示す長さ 16m、幅 0.6mの開水路実験装置を用いた.この装置は任意の流量の流れおよび段波を発生させることができ、水深と流速は各種センサーと画像解析装置を併用することで計測する.今回の実験では下流端から約 7m 付近に設けた土構造物模型の前後での水深と流速を計測し、模型の形状が津波エネルギー減衰効果に及ぼす影響を調べた.今回の実験で用いた4種類の模型の概要を図-2 に示す.研究の第1段階として、土構造物を剛体近似可能かつ滑動などの運動を無視できる条件から実験するという基本方針のもと、1週間養生の目標強度が 3000 kPa になるように配合設計されたセメント改良土を用いて模型を構築し、模型は水路底面にボルトで固定させた.作用させた流れは定常条件とし、ケース1では単位幅流量 $q=0.056m^2$ /s、水深 $h_0=0.40m$ 、ケース2では $q=0.083m^2$ /s、 $h_0=0.43m$ (値はいずれも目標値)、水路の底面勾配はいずれも0とした.結果の整理では、模型への接近地点、模型背後地点での津波エネルギー(全水頭)を次式で算定し、模型背後地点での全水頭 H_1 の接近全水頭 H_0 に対する比を構造物背後でのエネルギー透過率 K_1 として算定した.

$$H_{\rm i} = 0.5 v_{\rm i}^2 / g + h_{\rm i} \tag{1}$$

ここで、 $v_i = q/h_i$ は流速、gは重力加速度、 h_i は水深である.また、模型を越流した流れが射流から常流に変わることを考慮して、跳水後の水深 h_2 を次式で算定し、跳水後の全水頭 H_2 の接近全水頭 H_0 に対する比をエネルギー実質透過率 K_2 として算定した.

$$h_1/h_2 = 1/2\left(1 + \sqrt{1 + 8Fr_1^2}\right) \tag{2}$$

ここで, Fr₁は構造物背後でのフルード数である.着目する3つの地点の 流速と水深の定義を図-3に示す.

キーワード 土構造物,耐津波性能,水路模型実験

図−3 水路実験で着目した3地点での水深,流速の定義

図-5 跳水を考慮した実質エネルギー透過率 K2

表-1 着目地点での計測値 (g=0.056m²/s)

	項目	垂直- 斜面型	垂直- 垂直型	斜面- 垂直型	斜面一 斜面型		
模型背後	h_1	0.024	0.030	0.041	0.024		
	v_1	2.31	1.85	1.36	2.31		
跳水後	h_2	0.150	0.131	0.105	0.150		
	v_2	0.37	0.43	0.53	0.37		

表-2 着目地点での計測値 (q=0.083m²/s)

	項目	垂直- 斜面型	ー 重 重 重	斜面一 垂直型	斜面一 斜面型
模型背後	h_1	0.035	0.045	0.054	0.032
	v_1	2.38	1.85	1.54	2.60
跳水後	h_2	0.184	0.156	0.137	0.195
	v_2	0.45	0.53	0.61	0.43

3.実験結果と考察

一連の実験での計測結果として、模型背後 と跳水後における水深 hi と流速 vi を表-1, 2 に示す.この結果をもとに、2.に述べた方法 で算出した透過率 K₁ および K₂ と模型形状の 関係をそれぞれ図-4,5に示す.K₁が最も小 さいのは「斜面-垂直型: 図-2(3)」で, K₁が 最も大きい「斜面-斜面型: 図-2(4)」の2倍 以上のエネルギー減衰効果がある結果となっ た. 一方, 土構造物の形状が K₂に及ぼす影響 は、K1ほど大きくなく、形状による違いは10% に満たない.以上の実験結果は、マクロな視 点で土構造物の耐津波性能を考える場合には, 形状の影響を重視する必要はないが、局所的 な耐津波対策を検討する場合には、効果的な 形状を選定する必要があることを示している. 今回の実験を踏まえ,効果的な耐津波土構造 物の構築技術および設計手法の確立について 検討を続けたい.

謝辞 本研究は文部科学省科研費補助金基盤 研究(B) 24360195(研究代表者 宮田喜壽)の 助成を受けた.

参考文献 1) 地盤工学会: 地震時における地 盤災害の課題と対策 -2011 年東日本大震災の 教訓と提言, 2011.