都市河川における亜酸化窒素生成量と底泥中での生成メカニズムについて

日本大学	学生会員	○藤井大地
日本大学	正会員	齋藤利晃
日本大学	正会員	小沼 晋

1.はじめに

亜酸化窒素(N₂O)は地球温暖化係数が310と極 めて高い温室効果ガスであり¹⁾,また近年オゾン層 破壊の主要な原因物質であるとの報告がなされた ことから注目されている²⁾. N₂O は下水処理過程に おける生物反応において生成されるため,その生成 メカニズムの解明や生成抑制手法の開発が盛んに 進められてきた³⁾. 一方で, N₂O は河川中において も生成され得ることが確認されており, Beaulieu et al. (2010)⁴⁾ は人為起源の N₂O 生成量の 10%程度が 河川において生成されていると試算している.しか しながら、下水処理過程における現行の N₂O 生成 及び排出抑制対策は河川における N₂O 生成を考慮 しておらず,河川へ放流された未処理の窒素を生成 源とした N₂O 生成を許している. したがって,下 水処理過程を対象とした N₂O 対策が講じられてい ても,それは河川等を含めた上での総排出量の削減 とは同義ではない.下水起源の窒素からの N₂O 排 出量の削減を達するためには,河川において生成さ れ得る N₂O の量的な評価及び科学的な生成メカニ ズムの解明が求められる. そこで本研究では、下水 起源の窒素が流入する都市河川を対象とした調査 を行い,河川における N₂O 排出量及び生成量の推 定を行った.また、河川水中に溶存する N₂O の起 源及び河川中での N₂O 生成メカニズムに関する基 礎的な知見を得るべく,採取した底泥を用いた室内 実験を行った.

2. 調査手法·実験概要

(1)調査対象河川

調査対象は東京都を流れる一級河川である神田 川とした.神田川は流水の9割以上を下水処理水が 占めるとされており,河川中における下水起源の窒 素からの N₂O 生成を観測する上で適した条件であ る.なお,本研究における現地調査においても,神 田川下流部の流量に対して下水処理水が占める割 合は 88%程度と見積もられた.

(2)河川水中溶存 N₂0 濃度の定点調査

神田川河川水中の溶存 N₂O (D N₂O) 濃度域を把 握するために,下流部に位置する St.7 (昌平橋)に おいて定点調査を行った.本研究では,表層は採水 器の上端が水深 0.5m 程度,中層は採水器の中央部 が河川水深の 1/2 程度,底層は採水器の下端が川底 から 0.5m 程度と定義しそれぞれの深度で採水を行

キーワード N₂O, 亜酸化窒素, 都市河川, 下水道, 底泥

連絡先 〒101-8308 東京都千代田区神田駿河台 1-8 日本大学理工学部 Tel&Fax 03-3259-0672 E-mail: fujii_daichi@apost.plala.or.jp

った. 河川水中の DN₂O 濃度はヘッドスペース法に より測定した.橋上より採取した河川水 75ml を現 場にて直ちに 125ml バイアル瓶へ静かに移し、ブチ ルゴム栓とアルミキャップで密閉した. さらに河川 水 15ml を針付テルモシリンジで注入することで内 圧を高めた.このサンプルを現場にて5分間強震盪 することで気液平衡状態とした上で, ヘッドスペー スガスを採取した.この際,擦り合せガラスシリン ジに装着した針をバイアル瓶のゴム栓部に射すこ とで、内圧上昇分のガス(15ml)が回収される.採 取したガスは 50ml のアルミニウム製テドラーバッ グへ移し実験室へ持ち帰り, ECD/GC により即日分 析し N₂O 濃度を測定した. 河川水中 D N₂O 濃度の 算出にあたっては、バイアル瓶内に存在する N₂O 量から現場空気由来の N₂O 量を差し引いた量が液 相に溶存していたものとした.なお、気液平衡時の N₂Oの溶解度は化学便覧基礎編Ⅱ(日本化学会)に 基づき,内圧の上昇分を加味して算出した.

(3) 溶存 N₂0 の起源調査

1) 下水処理水流入による影響

神田川河川水中の DN₂O の起源として、下水処 理水の流入が関与しているか否かを明らかにする ため、処理水合流地点である St.2 付近において河 川水中 DN₂O 濃度及び水質の変化を調査した.こ の地点は神田川本川,流入する水路ともに水深が 1m 以下であるため、採水にはバケツを用いた. DN₂O の測定方法は前項の定点調査と同一である. 無機態窒素濃度については、採水した水を現場で 0.45µm のメンブレンフィルターにて濾過し、バイ アル瓶に封入した状態で実験室に持ち帰ったもの を、HPLC により測定した.流速の測定には電磁流 向流速計(JFE アドバンテック, AEM-213D)を用い,流量の推定に際しては断面の流速が一様であると仮定した.

Fig.2 Confluence of treated waste water (FCC: Fluid Control Channel)

2) 河川中での N₂0 生成

河川中における N₂O 生成の有無を確認するため, St.1~St.7 区間を対象に,採水を行いながら流下方 向に流水を追跡し DN₂O 濃度及び水質の変化を調 査した.水深が浅くバンドーン採水器の使用が困難 な St.1~St.3 についてはバケツでの採水としたため, 複数の深度での採水は行っていない.溶存酸素濃度 (DO) と電気伝導度(EC) については採水直後に 現場にて測定した. DO は HORIBA 社製 OM-51, EC は同社製 B-173 を使用した. DN₂O 濃度, 無機

態窒素濃度,及び流速は他の調査と同様の手法により測定した.

(4) 河川底泥中の N₂0 生成メカニズム

筆者らの既往の研究成果 ⁵⁾ によると,神田川の 底泥は嫌気的条件下において硝酸態窒素を比較的 高い転換率で N_2O に転換し得ることが確認されて いる.しかしながら,その反応過程及び反応速度に ついては未だ明らかでないため, St.5 にて採取した 底泥を用いた回分実験を行った.グラブ式採泥器 (DAIKI, DIK-190A-A1)を用いて採取した底泥を 実験室へ持ち帰った後,テルモシリンジ内に Table.1 に基づく条件下において封入し反応時間を 設け,気相部の N_2O 濃度及び液相部の水質の経時 変化を観測した.なお本実験では,複数のシリンジ を用意し 10 分ごとに内部のガス及び液相を回収す る手法とした.

Table1 Experimental condition

	Test time	Volume			
Head space gases		Gas	Liquid	Sediment	
N ₂ 100%	70min	30ml	20ml	10ml	

結果・考察

(1)河川水中溶存 N₂0 濃度の定点調査

N₂O 濃度は採水日によって, また深度によって大 きな差異が認められるが,いずれも検出可能な濃度 で溶存していた.最小濃度が得られたのは8月29 日の底層で 1.8µgN/L, 一方最大濃度が得られたの は10月28日の中層で21.7µgN/Lであった.比較対 象として、大気中のN₂O(315ppb)と気液平衡状態 にある場合の液相のDN₂O濃度が0.25µgN/Lである ことを踏まえると、7~83 倍程度となる.また、大 気との接触がある表層の DN₂O 濃度に着目すると DN₂O 濃度域は 2.4~18.4µgN/L となり, 同様の比較 をすると 10~74 倍となった. したがって, 全ての 調査時において大気中の N₂O 濃度に対し過飽和状 態であり、河川水表層から大気へ N₂O が排出され ていると考えられる.この事実は、神田川の河川中 において N₂O が生成されている,あるいは N₂O が 高濃度で溶存している水が流入していることを示 している. Itokawa et al. (1993)⁶ は東京都の K 川に おいて河川水中 DN₂O 濃度の調査を行っているが、 その下流域における濃度域は概ね8~23µgN/Lであ り、本研究における調査結果と近い濃度域であった.

また,同一の採水日においても採水深度によって DN₂O 濃度に差異が認められたが,両者の間に明確 な関係性は見出すことはできなかった.現時点で推 察される要因としては,底層付近を遡上する塩水の 影響により DN₂O 濃度が深度方向に一様でなかっ た,あるいは N₂O の溶解度が変化し測定上の誤差 が生じた可能性が挙げられる.

Fig.3 DN₂O concentration in the river water at Shohei-Bridge (St.7) (*: Data not available)

(2)溶存 N₂0 の起源調査

1) 下水処理水流入による影響

下水処理水の流入前後における DN₂O 濃度及び 河川水質の変化を Fig.4 に示す. DN₂O 濃度につい ては、6月の調査時には0.7µgN/L から0.9mgN/L に、 12月の調査時には0.3µgN/L から2.6µgN/L に上昇し た. したがって、処理水中の DN₂O 濃度は経時的 に大きく変動し得るものの、処理水を通した N₂O の排出が確認され、処理水中に溶存する N₂O が河 川水中に溶存する N₂O の起源のひとつであると考 えられる.一方、無機態窒素濃度に着目すると、両 調査において概ね 2 倍程度の濃度上昇が確認され た.よって下水処理水は,溶存 N_2O だけでなく, 河川中において N_2O に転換され得る窒素源も多分 に排出していると言える.

また、処理水中の DN₂O 濃度が比較的高かった

Fig.4 Influence of treated wastewater loading to Kanda-river

12 月の調査結果を例として,流入する DN_2O を量的に評価すると,単位時間あたりの河川断面 DN_2O 通過量は処理水流入前後で 0.23mgN/s から 5.28mgN/s へと大幅に増大した.故に,神田川の St.2 ~St.3 間において処理水が流入した直後は,河川水 中に溶存する N_2O の大部分が処理水中に溶存して いた N_2O を起源としている可能性が示唆された.

Table2 Comparison of Kanda-river and inflow water

			Conentration			Flow	Section
		DN_2O	Ammonia	Nitrite	Nitrate	Quantity	DN ₂ O Passage
		[µgN/L]	[mgN/L]	[mgN/L]	[mgN/L]	[m [*] /sec]	[mgN/sec]
St.1		0.28	0.4	ND	4.6	1.12	0.34
St.2	Kanda-river (Before inflow)	0.29	ND	ND	4.6	0.75	0.23
	Myoshoji	2.72	1.3	0.6	8.3	0.81	2.18
	Takadanobaba	4.00	1.5	0.6	8.5	0.77	3.10

2) 河川中での N₂0 生成

下水処理水が流入する St.2~St.3 間において河川 水中 DN₂O 濃度が上昇した後には,河川の水質を大 きく変化させ得る水量の水が流入する箇所は確認 できないにも関わらず,DN₂O 濃度は流下方向に上 昇を続ける結果となった.したがって,処理水中の 溶存 N₂O による濃度上昇の他に,河川中における N₂O 生成によって DN₂O 濃度が上昇している可能 性が示唆された.特に,DN₂O 濃度の上昇が顕著で あった St.4 付近以降の区間は水深が 3~4m と比較 的大きいため流速が低下し,中層及び底層が貧酸素 的な環境であったことから,嫌気的な底泥付近にお いて生物学的に N₂O が生じているものと推察され た.硝酸濃度の低下も中層及び底層において顕著で あり,不完全な脱窒が N₂O の生成源であると推察 された.

また, 調査対象区間 (St.3~St.7) における大気 への N₂O 揮散量を考慮した N₂O 生成量を推定する ため, 表層水の DN₂O 濃度によって一意的に決定さ れる N₂O の大気への揮散フラックスに, 各調査地 点において実測された流速及び水表面積を乗じる 事で各調査地点間の N₂O 揮散量を推定した.なお, 揮散フラックスの算出には, Lewis&Whitman (1924) ⁷ の境膜モデルを適用した.この推定された揮散量 に河川水中 DN₂O の濃度上昇分を加算することで 河川中での N₂O 生成量の算出を試みたが、St.5 以 降の中層及び底層水は電気伝導度が測定上限値 (20000µS/cm) 以上の塩水であり,上中流部由来 の河川水とは異なる水塊である可能性が示唆され たため、本研究では表層水を対象に解析を行うこと とした.対象区間における単位河川水量あたりの N₂O 生成量は 36mgN/m³となり, 水処理過程におけ る全国の平均 N₂O 排出係数である 89 mgN/m³と比 較しても無視できない値となった³⁾. この排出係数 を St.3 において得られた流量に適用し, 解析対象 区間の年間 N₂O 排出量を算出すると 4.8tN/年とな り、CO₂に換算すると 2300tCO₂/年程度となった. また、この N₂O 生成が全て脱窒により生じたと仮 定し、表層水の硝酸減少量に対する N₂O 生成量の 割合をN₂O転換率と定義するとその値は1.4%とな り, Beaulieu et al. (2010)⁸⁾の研究と同程度の値が 得られた.これは一般的な下水処理過程での N₂O 転換率に比べ大きな値であると言える.また,上述

の仮定に基づき,流入する硝酸の全量が算出された 転換率において N₂O に転換されるとすると、神田 川の年間 N₂O 排出量は 14.1tN/年となり、CO₂に換 算すると 4371tCO₂/年程度となった.これを落合水 再生センターの年間 N₂O 排出量である 6949tCO₂/ 年 (2008) と比較すると、63%程度に相当すること になり、下水処理場に匹敵する N₂O が都市河川に おいて生成され得るという結果となった.

3) 河川底泥中の N₂0 生成メカニズム

硝酸添加系の液相は時間経過に伴い硝酸濃度が 低下し,最終的には亜硝酸の蓄積が確認された.ま た COD は初期値が 41mg/L であったが徐々に低下 し,40分以降は20mg/L以下で概ね横ばいであった. 気相部の N₂O 濃度については、加速度的な濃度の 上昇が見られ、シリンジ内の環境が N₂O をより高 い転換率で生成し得る条件へと遷移していったと 推察される.具体的には,脱窒が経時的に不完全な 反応になり, N₂Oや亜硝酸が生成されたものと考え られる. Goo et al. (2001)⁹⁾は、嫌気条件下におけ る生物反応について、COD/NO3比が卓越する反応 を左右し得ると報告している.本実験結果について も同様の評価を行ったが、COD/NO₂比と N₂O 生成 速度との間に明確な関係性が見られ, CN 比の低下 に伴い N₂O 生成速度が増大する傾向が示された. (Fig.7) したがって、実際の神田川底泥中におい ても、COD/NO₃比あるいは COD/NO₂比が N₂O の

Fig.6 Changes of N₂O concentration in head space gases and inorganic nitrogen concentration (*:Data NOT available)

生成量を制御し得る因子である可能性がある.なお, 1mgN/L程度のアンモニアが終始検出されているが、 窒素添加をしていない Control 系にいてもほぼ同じ 濃度のアンモニアが検出されており,これは底泥が 含有していた,あるいは有機物の分解により生じた ことが予見されるが具体的な起源は不明である.

COD/NO3 ratio or COD/NO2 ratio

4. まとめ

神田川は N₂O の生成源及び排出源であると考え られ、その量的な影響も積極的に議論されるべきも のであると推察された.したがって、下水処理場内 に限った N₂O 対策ではなく,河川における N₂O 生 成等も考慮した温室効果対策及び窒素処理の在り 方を科学的に評価していく必要がある.そのための 基礎的な知見として,底泥中において硝酸態窒素が 嫌気的条件下において比較的高い転換率で N₂O に 転換され, CN 比が N₂O の生成速度を操作し得る因 子であることが本研究において示唆された. 今後 N₂Oの排出抑制を達するためには、人為的な窒素除 去との比較検討が必要であると考える.

5. 引用文献

- 1) IPCC 第4次成果報告書, 2007 年
- 2) Ravishankara *et al.* (2009) Nitrous Oxide (N₂O): The Dominant Ozone-Depleting Substance Emitted in the 21st
- Century, SCIENCE, 326, 123-125 3)田中修司 (2006) 下水道における地球環境対策,国土技 術政策総合研究所資料, 344, 47-60 4)Beaulieu *et al.* (2011) Nitrous oxide emission from
- denitrification in stream and river networks, 108(1), 214-219 5)藤井大地・齋藤利晃・小沼晋 (2012) 都市河川底泥中にお ける亜酸化窒素の生成機構について,環境工学研究フォ ーラム講演集,49,116-118
- 6) 糸川浩紀ら (1993) 都市河川における一酸化二窒素の変 化に関する調査, 30, 118-120
- 7) Lewis & Whitman (1924) Principles of Gas Absorption, Industrial and engineering chemistry, 1215-1220
- 8) Beaulieu et al. (2011) Nitrous oxide emission from denitrification in stream and river networks, 108(1), 214-219, より植生のある都市河川における調査結果の平均値 9)Goo et al. (2001) 嫌気性消化法における硝酸性窒素の挙動,
- 土木学会論文集,678, VII-19,61-68