# 局所的な鉄筋腐食が RC はり部材の構造性能に及ぼす影響

#### 1. はじめに

塩害による鉄筋腐食は,構造材として有意な鉄筋量 の減少,鉄筋とコンクリート間の付着劣化を引起こし, RC構造物の耐荷性能に影響を及ぼすことが多い.

鉄筋腐食を生じた RC 構造物の耐荷性能に関する研 究は、各方面で精力的になされており、有用な知見が 蓄積されつつあるが、局所的な鉄筋腐食が RC はり部 材の耐荷性状に及ぼす影響について、検討した事例は 少ない.実構造物に生じる鉄筋腐食は、単一部材の中 でも、外部環境が場所によって異なることや、曲げひ び割れ発生箇所より、塩化物イオンが容易に供給され る等の理由で、局所的に発生、進行する場合が多い.

そこで、本研究では局所的な鉄筋腐食が RC はり部 材の曲げ耐荷性状に及ぼす影響を明らかとすること を目的として、電食により主鉄筋に局所的な鉄筋腐食 を導入した RC はり部材の載荷実験を行った.

## 2. 実験概要

#### 2.1 試験体概要および実験パラメータ

表-1に実験パラメータ、図-1に試験体概要を示 す.試験体は曲げ破壊が先行する断面諸元であり,主 鉄筋として,異型鉄筋 D16(SD295A)を2本配筋した. 主鉄筋比は 1.41%である.主鉄筋端部は、90°折り曲 げ直角フックとし,定着部に補強筋を配筋した.S0 シリーズ試験体は,せん断補強筋を有さない試験体シ リーズであり,S1シリーズ試験体は,せん断補強筋

| 長岡工業高等専門学校 | 学生会員 | 〇田村 | 寸 椋 |
|------------|------|-----|-----|
| 長岡工業高等専門学校 |      | 金子  | 生樹  |
| 長岡工業高等専門学校 | 正会員  | 村上  | 祐貴  |

として D6(SD295A)を 75mm 間隔で配筋した試験体シ リーズである.

実験パラメータは主鉄筋の腐食率,腐食領域である. 設定腐食率は0%,10%,20%,40%の4水準である. 腐食発生領域は100mmとし,発生位置はスパン片側 の支間中央より375mm~475mmおよび675mm~775mm の2水準とした.腐食領域に作用するモーメントは, 前者が等曲げ区間の60%,後者が20%である.

本実験では局所的な鉄筋腐食を再現するため, 電食 により, あらかじめ局所的に腐食を導入した主鉄筋を 用いることとした. 腐食領域には, コンクリートとの 付着を断つ目的で, 断面減少分を油粘土で埋め, グリ スを塗布したビニールテープを巻き付け, アンボンド



表-2 コンクリート配合表(設計基準強度:30N/mm<sup>2</sup>)

| G    | W/C<br>(%) | 単位量(kg/m <sup>3</sup> ) |      |     |      |         |  |
|------|------------|-------------------------|------|-----|------|---------|--|
| (mm) |            | 水                       | セメント | 細骨材 | 粗骨材  |         |  |
| ()   |            | W                       | С    | S   | G    | <b></b> |  |
| 25   | 60         | 169                     | 282  | 810 | 1009 | 2.82    |  |

| シリーズ | 試験体名     | 腐食幅<br>(mm)                   | 設定腐食領域<br>(mm)  | 設定腐食率<br>(%) | 質量減少率<br>(%) | 断面減少 <sup>2</sup> | 率(補正値)<br>%)<br>□ | 変動係数 | 降伏荷重<br>(kN) | 最大荷重<br><sup>(kN)</sup> | 圧縮強度<br>(N/mm²) | 破壊モード |
|------|----------|-------------------------------|-----------------|--------------|--------------|-------------------|-------------------|------|--------------|-------------------------|-----------------|-------|
|      | S0-0     | -                             | _               |              |              | -                 | 取八世               |      | 60.0         | 66.5                    | 30.0            | 曲げ引張  |
|      | S0a-10   |                               | 100 支間中央より375mm | 10           | 11.2         | 11.2              | 14.9              | 0.02 | 55.4         | 61.0                    | 30.0            | 斜め引張  |
| S0   | S0a-20   | 100                           |                 | 20           | 20.6         | 20.4              | 26.6              | 0.04 | 52.5         | 53.0                    | 27.5            | 斜め引張  |
|      | S0a-40   | 100                           |                 | 40           | 37.3         | 38.5              | 46.7              | 0.13 | 43.0         | 44.0                    | 30.0            | 斜め引張  |
|      | S0b-40   |                               | 支間中央より675mm     |              | 40.7         | 40.7              | 56.9              | 0.12 | 57.4         | 62.0                    | 31.0            | 曲げ引張  |
|      | S1a-0    | -                             | -               | _            |              |                   |                   |      | 59.3         | 64.5                    | 30.3            | 曲げ引張  |
| S1   | S1a-20*1 | <u>S1a−20*1</u><br>S1a−40 100 | 100 支間中央より375mm | 20           | 25.6         | 22.5              | 31.7              | 0.06 | 62.5         | 65.0                    | 30.9            | 曲げ引張  |
|      | S1a-40   |                               |                 | 40           | 45.8         | 41.6              | 57.7              | 0.14 | 46.8         | 61.5                    | 31.0            | 破断    |
|      |          |                               |                 |              |              |                   |                   |      |              | 什土宝佐                    |                 |       |

表-1 実験パラメータおよび実験結果

キーワード 局所腐食 曲げ耐荷性状 ひずみ分布

連絡先 〒940-8532 新潟県長岡市西片貝町 888 番地 長岡工業高等専門学校 TEL0258-34-9276

処理を施した.

コンクリートの配合を**表-2**に示す.なお,セメントには,早強ポルトランドセメントを使用した.

#### 2.2 腐食試験手法

腐食手法は,設定した腐食率が比較的早期に得られ, その制御が容易な電食試験法を採用した.腐食対象領 域のみを銅板で囲い,その他の領域は防食テープを巻 き保護した上で,直流電流を印加し,対象領域のみ腐 食を導入した主鉄筋を作製した.

鉄筋腐食の評価手法は,腐食試験前後における鉄筋 の質量減少率および 3D レーザースキャンによる断面 減少率を用いた.質量減少率は,電食試験終了後の鉄 筋を除錆して質量を測定し,試験前後の質量差より算 出した.断面減少率については,3D レーザースキャ ンを用いて載荷試験終了後の鉄筋の3 次元形状を 0.4mm ピッチで測定した値と健全時の鉄筋の断面積 より算出した.なお,健全時の鉄筋断面積は3D レー ザースキャンの計測長さに制限があるため,鉄筋の密 度を7.85g/cm<sup>3</sup>とし,質量から算出した.

2.3 載荷試験概要および測定項目

載荷試験は、図-1に示すように載荷点間隔 150mm, 支点間距離 1650mmの静的2点集中載荷による曲げ載 荷試験とし、変位制御(0.5mm/min)で行った.

測定項目としては、支間中央部のたわみ、主鉄筋の 軸方向ひずみである.支間中央部のたわみは、 1/100mm 変位計を試験体中央に設置し測定を行った. 主鉄筋の軸方向ひずみの測定に関しては、ひずみゲー ジ貼付け位置を鉄筋内部とした貼合わせ鉄筋を採用 した<sup>1)</sup>.鉄筋ひずみの測定は配筋した2本の主鉄筋の うち1本を対象とし、鉄筋ひずみの測定間隔は、等 曲げ区間を75mm間隔,腐食領域および腐食端から 載荷点方向300mmを50mm間隔とし、その他の領 域は100mm間隔とした.

## 3. 実験結果

## 3.1 鉄筋の腐食状況

図-2に3Dレーザースキャンにより計測した腐食 対象領域の鉄筋の平均断面積と質量減少率から算出 した平均断面積との比較を示す.3Dレーザースキャ ンの計測値は,質量減少率より算出した値に比べて約 4.0%大きい値を示す傾向にあった.これは,腐食鉄筋 の表面形状が滑らかではなく孔食や出張りがあり,そ



の部分にはレーザー光が入射されず正確に計測でき なかったことが要因として挙げられる.本実験では, 質量減少率より算出した値が真の値であると仮定し,

3D レーザースキャンの断面積の計測結果に補正係数 0.96 を乗じて,以降の検討を行うこととした.なお, これ以降の検討は,補正した断面積を用いて算出した 断面減少率を腐食率として扱う.

#### 3.2 載荷試験結果

## (1)S0 シリーズ試験体

表-1 に載荷試験結果の一覧を示す.また,図-3(a) に荷重と中央変位の関係を示す.

まず, せん断補強筋を有しない S0 シリーズ試験体 では, 全ての試験体で非腐食試験体(S0-0 試験体)と比 べ剛性の低下が確認され, S0a シリーズ試験体では鉄 筋の腐食量が大きいほど, 剛性低下が顕著に生じた.

図-4(a)~(d)に S0 シリーズ腐食試験体の各荷重時 における主鉄筋のひずみ分布性状を実線で示す.各図 に破線で示したひずみ分布は非腐食試験体の鉄筋ひ



ずみ布である.

全腐食試験体で,腐食領域の鉄筋ひずみが他の領域 に比べて非常に大きく,腐食試験体の剛性低下の主た る要因である.

図-5(a)~(d)に S0 シリーズ試験体の終局時の破壊 ひび割れ性状を示す.非腐食試験体である S0-0 試験 体は、スパン広範囲に曲げひび割れが発生した後、等 曲げ区間の主鉄筋が降伏し、最終的に等曲げ区間上縁 コンクリートが圧壊し、破壊に至った.腐食試験体 S0a-10 試験体および S0a-20 試験体においても、S0-0 試験体と同様に、スパン内の広範囲に曲げひび割れが 発生し、図-4 に示すひずみ分布より等曲げ区間にお いて鉄筋降伏を生じていることが分かる.しかしなが ら、腐食領域に発生した曲げひび割れが,斜めひび割 れを誘発し、このひび割れが卓越して進展、拡幅し、 最終的に斜め引張破壊を呈した.腐食率の大きい S0a-40 試験体については、低荷重レベル時から腐食領 域のコンククリート腹部に発生した斜めひび割れが 拡幅し,斜め引張破壊に至った.腐食領域が支点近傍 である S0b-40 試験体については,腐食領域に作用す るモーメントが小さいため,等曲げ区間において鉄筋 降伏後,曲げ引張破壊を呈した.

以上のように、本実験の範囲内ではせん断補強筋を 有しない RC はり部材では、せん断スパンの局所的な 腐食の存在による破壊モードの変化が確認された.こ れは、局所的に腐食を生じた領域において、集中的に 鉄筋ひずみが大きくなり、同領域において斜めひびわ れが誘発されるとともに鉄筋量が少ないため、ダボ効 果が低下し、斜め引張破壊を呈したと考えられる.

# (2)S1 シリーズ試験体

S1 シリーズ試験体の荷重と中央変位の関係を図-3(b)に示す.まず,S1a-20 試験体においては,非腐食 試験体である S1-0 試験体とほぼ同様の荷重変位関係 を示しており,耐荷性状に及ぼす局所的な鉄筋腐食の 影響は認められなかった. S1a-40 試験体については, 図-4(e)に示す鉄筋ひずみ分布より,荷重が約 50kN の時点で腐食領域の鉄筋が降伏したため,その時点か ら剛性が低下したが,その後も緩やかに荷重は増加し, 耐力は非腐食試験体と同程度の値を示した.これは, 腐食領域にて鉄筋が降伏した後,他の領域の付着が健 全であるため,腐食領域の鉄筋が直ちにひずみ硬化域 に達し,荷重が増加したと考えられる.前述した腐食 領域の平均腐食率がほぼ同じであるせん断補強筋を 有さない S0a-40 試験体では,荷重が約 44kN の時点に おいて腐食領域の鉄筋が降伏したものの,破壊モード が斜め引張破壊に移行したため降伏以降の荷重増加 は認められず,せん断補強筋が局部腐食によるせん断 耐力低下に有効であることが確認される.

図-5(g), (h)に S1 シリーズ腐食試験体の破壊ひび 割れ性状を示すように, S0 シリーズ腐食試験体と同 様,腐食領域より発生した曲げひび割れが起点となり, 腹部コンクリートに斜めひび割れが発生した.特に S1a-40 試験体では,このひび割れ以外のひび割れは発 生していないが,上述したようにせん断補強筋による せん断抵抗が有効に作用し,斜め引張破壊を生じるこ とはなかった.しかしながら,せん断補強筋は腐食領 域における局所的な変形の集中の抑制には寄与せず, 最終的に腐食領域の主鉄筋が破断して破壊に至った.

## 4. 局所的に鉄筋腐食した RC はり部材の耐荷性

図-6に各腐食試験体の主鉄筋が降伏した時点にお ける曲げモーメントを非腐食試験体の降伏曲げモー メントで正規化した降伏曲げモーメント比 (My-cro/My)と最大腐食率の関係を示す.なお,降伏曲 げモーメントは,鉄筋ひずみ分布から判断した鉄筋降 伏時点の荷重/2に,支点から腐食領域先端までの距離 (450mm)を乗じて算出した.なお,等曲げ区間におい て鉄筋が降伏した試験体については,この距離をせん 断スパン長(750mm)とし,その場合の腐食率は,等曲 げ区間の鉄筋は非腐食のため0%とした.また,図中 には,鉄筋の断面減少を考慮し,曲げ理論に基づいて 算出した降伏曲げモーメント比を実線で示す.

同図に示すように全体的な傾向としては,実験の降 伏曲げモーメント比は,理論値と比較的良好な一致を 示した.

等曲げ区間で, 主鉄筋が降伏した S0a シリーズ腐食



試験体では、腐食領域に作用するモーメンが等曲げ区 間の60%であり、腐食対象領域の鉄筋の腐食率が40% 以上にならないと、耐荷力に影響を及ぼすことはない と考えられる.しかしながら、試験体 S0a-10 および 試験体 S0a-20 は図-4(a)、(b)に示したように、等曲 げ区間において鉄筋が降伏したものの、モーメント比 が1.0より若干小さい値を示している.これは、腐食 領域の変形が大きいことにより、等曲げ区間の曲率も 影響を受け、非腐食試験体に比べて主鉄筋が早期に降 伏したことが考えられるが、この原因については、今 後さらなる検討が必要である.

#### 5.結論

以下に本研究で得られた知見を示す.

- (1)本実験の範囲内では、せん断補強筋を有しない RCはり部材において、せん断スパン内に局所的 な鉄筋腐食を生じた場合、腐食領域への変形の集 中により、破壊モードが斜め引張破壊へ移行する 場合があった.また、耐荷性能および変形性能は 著しく低下した.
- (2) せん断補強筋は、局所的な腐食による斜め引張破 壊を抑制するが、局所的な腐食を生じた領域に鉄 筋の変形が集中し、鉄筋破断を生じる恐れがある.
- (3)本実験の範囲内では、せん断スパン内において局 所的な鉄筋腐食を生じた場合、鉄筋の最大腐食率 を考慮した曲げ理論に基づき、主鉄筋降伏時のモ ーメントを、ある程度評価可能であった。

参考文献

 村上祐貴,大下英吉,鈴木修一,堤知明:鉄筋腐 食したRC梁部材の残存耐力性状に及ぼすせん断 補強筋ならびに定着性能の影響に関する研究,土 木学会論文集 E, vol.64, No.4, pp.631-649, 2008.12.