JR 東日本	東京工事事務所	正会員	山本	航介
JR 東日本	東京工事事務所	正会員	田中	寿弥
JR 東日本	構造技術センター	正会員	黒田	智也
JR 東日本	東京工事事務所	正会員	山田	正人

1.はじめに

鋼管にコンクリートを充填した CFT 柱は,変形性能に優れ,施工時に型枠が不要であることから鉄道構造 物にも多く用いられている構造である.近年,線路上空に地盤を構築し,社会基盤スペースを創造するプロジ ェクトが増加しており,非常に狭隘な営業線間に柱を設置することが多く,大規模地震に対応しつつ,これま で以上にスリムな柱構造が求められている.現在,鉄道構造物等設計標準・同解説 耐震設計¹⁾(以下耐震標準) では,終局状態となる部材角は最大曲げモーメントの 90%を維持可能な最大の部材角としている.これは今 までに行われてきた CFT 柱の水平交番載荷試験で,いずれも柱基部において局部座屈が発生し,最大曲げモ ーメントの 90%付近で耐力が低下しているためである.90%以降の領域でも安定した挙動を示す構造であれ

試験体1

360mm

ば,柱をスリムに出来,さらに狭隘な場所に も柱を設置することが可能になる.

試験体2 今回はこの点に着目し,柱基部に集中して いる局部座屈の範囲を広げることによって亀裂の発生を遅 らせ,変形性能を向上させることを目的とし,柱下部にス リットを設けた CFT 柱の交番戴荷試験を行ったのでその内 容を報告する.

2.試験概要

試験体は直径 360mm の鋼管をフーチングに 720mm 埋め 込み,コンクリートを充填したもの2体とした.試験体の諸 元を表-1 に示す.なお,鋼管内部にはコンクリートを拘束 するためにスパイラル鉄筋(半径 360mm)を配置した.また, 試験体2には局部座屈の範囲を広げ,鋼管の座屈を遅らせる ために柱基部から長さ 1D(=360mm) .幅 3mm のスリットを 8 箇所設けた.実験状況を図-1 に,スパイラル鉄筋およびス リットの設置範囲を図-2 に,スリット部の断面図を図-3 に 示す. 戴荷方法は, 軸力比 0.2 のもとで, 図-1 に示す位置 での正負水平交番戴荷とした.図-4 は水平力交番戴荷試験 の状況である.降伏変位(v)は戴荷方向から45°位置の降 伏時とし,変位の整数倍を正負1サイクルずつ戴荷した.

3.試験結果

3.1 損傷状況

試験体1は359kN 戴荷時に鋼管基部が降伏し,2 y 戴荷 時に柱基部から 50mmの箇所に 10mm 程度のはらみ出しが 発生した.その後,はらみ出しは徐々に大きくなり,9

キーワード CFT 柱, 変形性能, スパイラル筋, スリット

連絡先 〒151-8512 東京都渋谷区代々木 2-2-6 JR 東日本東京工事事務所工事管理室 TEL 03-3320-3482

y 戴荷時にはらみ出し部分に亀裂が生じ,耐力が急激に 低下したため試験を終了した.一方,試験体2は,345kN 戴荷時に鋼管基部が圧縮降伏し,戴荷面圧縮側の鋼管基 部より 200mmの箇所にはらみ出しが発生した.また 2

y 戴荷時にはらみ出しが戴荷方向から 45°, 柱基部か ら 100mm の箇所にも発生し,スパイラル鉄筋外側のか ぶりコンクリートにひび割れが発生した.その後はらみ 出しは図-5 のように戴荷面の圧縮側から左右方向へ順 次移行した.10 y 戴荷時(曲げモーメント 310kNm) に座屈が発生した.12 y 戴荷時に柱基部 45°の位置よ り亀裂が発生したため,試験を終了した.解体した際の 状況を図-6 に示す.スパイラル鉄筋には大きな損傷は 生じていないが,打音の結果,内部コンクリートは圧壊 していると考えられる.

3.2 荷重-変位関係

図-7 に履歴曲線を,図-8 に包絡線を示す.両図の結 果は,両試験体の材料試験による試験結果の影響を排除 するため,試験結果を部材角及び曲げモーメントで除し て無次元化している.また,戴荷時の軸力に伴う復元力 の低下(P- 効果)を考慮し,補正を行った.

試験体1は,4 y 戴荷時に水平荷重が最大となり,

最大荷重は 466kN,最大曲げモーメントは 503kNm であった.最大荷重以降も安定した挙動を示していたが, 9 y 戴荷時の基部亀裂発生以降,急激に耐力が低下した.直前の8 y 戴荷時の曲げモーメントは 472kNm で, 最大荷重時の 94%であった.

試験体 2 は,2 y 戴荷時に水平荷重が最大となり,最大荷重は 385kN,最大曲げモーメント 412kNm であった.2 y から耐力はなだらかに低下し,最大曲げモーメントの 90%を下回った後(8 y 以降)も安定した挙動を示した.10 y 戴荷時に座屈が発生し,12 y 戴荷時に柱基部に亀裂が生じ,耐力が急激に低下した.直前の 10 y 戴荷時における曲げモーメントは最大値の 71%である 310kNm であった.

この結果より,スリットが無い場合に関しては耐震標準通り,終局点は最大曲げモーメントの90%を維持できる最大の部材角とすることが妥当と言える.また,M/Myの最大値は試験体1が1.3(503kNm),試験体2が1.1(433kNm)とスリットを入れた試験体の方が約86%程度まで低下したが,/ yの最大値は試験体1が9.18であったのに対し,試験体2は12.3となり,約30%大きくなった.これらの結果より,スリットを入れたことによって,耐力は低下するものの変形性能は向上したと言える.

4.まとめ

本研究では,変形により地震エネルギーを吸収させることを目指し,変形性能を向上させた CFT 柱につい て検討を行った.CFT 柱に8箇所のスリットを設けた結果,破壊形態が局部座屈からスリット部分長の座屈と なり,スリットを設けない場合に比べて変形性能を30%向上したが,耐力は86%程度に低下した.また,最 大曲げモーメントの90%を下回る71%のステップまで安定した挙動を示した.安定した挙動を維持しつつ耐 力の低下を抑制することが,今後の課題である.