フック定着部の損傷が鉄筋腐食した RC はり部材のせん断耐荷性状に及ぼす影響

中央大学	学生会員	○松永	将人
長岡工業高等専門学校		金塚	智洋
長岡工業高等専門学校	正会員	村上	祐貴
中央大学	正会員	大下	英吉

1. はじめに

近年,既存のコンクリート構造物において,塩害, 中性化,アルカリ骨材反応,化学的浸食等の経年劣 化が深刻となっている。その一方で,わが国では建 設後年数を経た構造物の増加,ならびに社会資本投 資力の減少により,既存の構造物を長期供用する必 要性が増大していることから,経年劣化を前提とし た維持管理が求められるようになっている。

RC 構造物に生じる劣化現象は、上述のように多岐 にわたるが、その中でも、特に鉄筋の腐食は耐荷性 能や変形性能といった構造性能に及ぼす影響が大き いことが知られており、海水飛沫や飛来塩分の強い 地域が多いわが国にとって、鉄筋腐食した既存 RC 構造物の現有の構造性能を定量的に評価可能とする 手法の確立は強く望まれている。

鉄筋腐食した RC 構造物の構造性能評価に関する 研究は過去にも多数実施されており,曲げ耐荷力に ついては主鉄筋の腐食劣化を考慮することで,現行 の曲げ耐力評価手法を用いてある程度評価可能とさ れている^{1),2)}。せん断耐荷力については,主鉄筋の付 着劣化によりアーチ耐荷機構が形成され,せん断耐 荷力は非腐食時よりむしろ増加すると報告されてい る場合が多い^{3),4)}。これらの知見は,主鉄筋端部定着 が十分に機能した状態で得られている。しかしなが ら,近年,アルカリ骨材反応による鉄筋曲げ加工部 の破断や凍結防止剤の使用による部材端部の著しい 鉄筋腐食により,主鉄筋定着部に損傷を受けた構造 物の存在が報告されており,定着部の腐食劣化が現 有の構造性能に及ぼす影響について検討する必要が ある。

そこで、本研究では定着部に腐食劣化を生じた RC はり部材の載荷試験を行い、定着部の腐食劣化が現 有のせん断耐荷性状に及ぼす影響について検討した。

2. 実験概要

2.1 試験体概要

試験体の形状と寸法及び配筋を図-1 に示す。ipb シリーズ試験体はフック定着部を設けていない試験 体であり、鉄筋形状による幾何学的な拘束を有しな い試験体である。H シリーズ試験体は、フック定着 部を設けた試験体である。試験体形状は両シリーズ とも同様であり、長さ 1950mm、断面形状は幅 180mm、梁高 170mm、220mm および 280mm の 3 種類である。

主鉄筋には、降伏による曲げ破壊を防ぐため、高 張力ネジフシ鉄筋 D19(USD685)を用いた。コンクリ ートの配合は表-1に示す通りである。設計基準強度 は 30N/mm²であり、練混ぜ水には、鉄筋腐食を促進 させるため 5%NaCl 水溶液を用いた。なお、セメン トは早強セメントを使用した。

衣一 コンソリートの配合							
G _{max}	W/C	単位量(kg/m ³)					
		水	セメント	細骨材	粗骨材	泪和刘	
(mm)	(%)	W	С	s	G	化化有可	
25	60	169	282	810	1009	2.82	

キーワード 鉄筋腐食,フック,定着,せん断スパン比 連絡先 〒112-8551 東京都文京区春日 1−13−27 中央大学コンクリート研究室 TEL03−3817−1892

2.2 腐食試験手法

鉄筋の腐食手法は、設定した腐食率が比較的早期 に得られ、その制御が容易である電食試験法を採用 した。5%NaCl 水溶液を満たした水槽内に試験体を 浸漬し,鉄筋を陽極側,銅板を陰極側に接続し,所 定の積算電流量に到達するまで通電した。なお、電 食試験は材齢7日後に実施することを標準とした。

2.3 実験パラメータおよび載荷試験方法

実験パラメータは表-2に示すように,主鉄筋定着 フックの有無(有:Hシリーズ, 無: ipb シリーズ), せん断スパン比(ald)および主鉄筋の腐食率である。 aldは2.40, 3.19 および4.42の3水準であり、せん 断スパン長 a は一定で有効高さ d が異なる。主鉄筋 の目標腐食率は10%であり、はり全長にわたり鉄筋 を腐食させた。ただし、試験体H(3.19)-d130-10sは、 支点間のみ鉄筋を腐食させ、定着部の鉄筋は電食の 対象外とした。なお、フック定着部を有しない ipb

シリーズ試験体の実験結果の一部は既往の研究で報 告しているう。

載荷試験は変位制御(0.5mm/min)で行い、載荷点 間隔 200mm として 2 点集中荷重を静的に載荷させ た。

3. 実験結果

3.1 腐食性状

表-2 に各試験体の主鉄筋の平均腐食率を示すよ うに、いずれの試験体においても概ね目標値に近い 値を示した。なお,Hシリーズ腐食試験体の腐食率 はスパン内の平均値である。

かぶりコンクリートの腐食ひび割れ性状は、ipb シリーズ試験体では、底面に鉄筋軸に沿った腐食ひ び割れが、はり全長にわたり発生した。 H(3.19)-d180-10s を除く H シリーズ試験体では,底 面に鉄筋軸に沿った腐食ひび割れが発生し、側面に は、フック鉛直部に沿って腐食ひび割れが発生した。 支点間のみを腐食させた H(3.19)-d180-10s 底面にお いても,支点外側の領域まで腐食ひび割れが発生し たが、その幅は全長腐食試験体に比べて小さく、錆 汁の漏出は認められなかった。載荷試験終了後、鉄 筋をはつり出し,目視によって観察した結果,腐食 は極軽微であったことから、支点外側領域のかぶり コンクリートのひび割れの発生は、支点間に発生し

シ

表一2 実験パラメータ							
リーズ	試験体名	せん断スパン比 a/d	有効高さ d(mm)	腐食率 (%)	最大荷重 (kN)		
	H(2.40)-d240-10	2.40	240	9.6	129.1		
	H(3.19)-d180-10	0.40	400	9.1	90.0		
н	H(3 19)-d180-10s	3.19	180	10.7	108.5		
	H(4.42) - d130 - 10	4 4 2	130	9.6	56.5		
	$\ln(4.42)$ area 10	2.40	240	7.1	110.5		
inh	ipb(2.40) d240 10 ipb(3.10) - d180 - 10	3 10	180	81	62.5		
ipo	ipb(3.13) d100 10 ipb(4.42) - d130 - 10	4.42	130	7.1	39.5		
	100(4.42) 0100 10	7.72	150	7.1	00.0		
	(a) (b)	ipb (2. 40) -	-d240-10 -d180-10 -d130-10				
	図-2 破 (a)	と壊ひび割れ <u> ▼ ▼</u> H(2.40)-	(ipb シ 〜〜〜〜 d240-10	リーズ)		
		▼ ▼	4190 10				
	(D)	H(3. 19)-	a180-10				
	(c)	H(3. 19) –d	180–10s				
	(d) 終局時の	H(4.42)- D破壊ひび割れ	d130–10	腐食ひひ	「割れ		
	図-3 破	壊ひび割れ	(Hシリ-	-ズ)			

た腐食ひび割れの伝播が主たる要因であると考えら れる。

3.2 破壊性状

図-2および図-3に各試験体の終局時における破 壊ひび割れ性状を示す。まず,フック定着部を有し ない ipb シリーズ試験体は、載荷点よりに斜めひび 割れが発生した後、鉄筋軸に沿った付着割裂ひび割 れが支点を越えて発生しており,付着割裂破壊を生 じた。

次に, H シリーズ腐食試験体では, ipb シリーズ 試験体と同様に、斜めひび割れが載荷点よりに発生 し、荷重の増加に伴いこのひび割れを起点として鉄 筋軸に沿った水平ひび割れが,はり端部方向に進展 した。変形が進むにつれて支点上縁のコンクリート に曲げひび割れが発生し、下方に進展した。最終的 に、この曲げひび割れ先端とフック鉛直部の腐食ひ び割れが連結したことではりは破壊に至った(定着 上縁破壊と称する)。これは、支点内側では、鉄筋 の腐食により付着が損失し、支点近傍まで高レベル の鉄筋力が伝達されたことで、コンクリートの変形 が増大し、これに対し、支点外側の領域ではフック が直角を保持してこの変形に抵抗することにより、 支点上縁のコンクリートに曲げ引張力が作用した ことが要因として考えられる。

3.3 荷重と中央変位

図-4(a)~(c)に各試験体の荷重と中央変位の関係を a/d 毎に示す。図中には式(1)より算出した各試験体の非腐食時のせん断破壊時の荷重算定値(2Vc)を示した⁶⁾。なお、荷重算定に際し、圧縮強度を 30N/mm²とした。

$$V_c = 0.2 f_c^{1/3} (100 p_t)^{1/3} \left(\frac{10^3}{d}\right)^{1/4} \left(0.75 + \frac{1.4d}{a}\right) b_w d$$
(1)

ここで、 f'_e : コンクリートの圧縮強度(N/mm²)、 p_t : 軸引張鉄筋比、d: 有効高さ(mm)、a: せん断ス パン長(mm)、 b_w : 部材幅(mm)である。

いずれの a/d においても, H シリーズは ipb シリ ーズに比べて耐力は大きく、定着フックの存在によ り鉄筋腐食に伴う耐力低下が抑制されている。また, ald=2.40 および ald=3.19 の H シリーズ試験体の耐 力は非腐食時の破壊荷重算定値の同程度か大きい。 これは、既往の研究と同様、鉄筋腐食に伴う主鉄筋 の付着劣化により、アーチ耐荷機構が形成されたた めであると考えられる。アーチ耐荷機構の形成が, 主鉄筋の付着劣化に起因することを鑑みれば, ipb シリーズ試験体においても,アーチ耐荷機構が形成 されていると考えられるが、主鉄筋定着部において も鉄筋腐食が生じていること、フック定着による幾 何学的な拘束を有しないことから、アーチ耐荷機構 が形成される過程で, 主鉄筋が定着部からの抜出し, H シリーズのような耐力増加が生じなかったと考え られる。また, a/d=3.19 において, 定着部に損傷を 生じていない試験体 H(3.19)-d180-10s が,はり全長

にわたり鉄筋腐食した H(3.19)-d180-10 に比べて約 20kN 増加した。このことは、フック部の腐食ひび割 れ性状が定着上縁破壊時の耐力に影響することを示 唆する結果である。

4. 定着部の損傷がせん断耐荷性状に及ぼす影響

図-5 に式(1)より算定した非腐食時の破壊荷重で 正規化した各試験体の耐力比と主鉄筋の平均腐食率 の関係を示す。腐食率と耐力非の間には明確な相関 関係は認められず,本実験における破壊の直接的要 因が主鉄筋の断面減少ではなく,定着部の損傷であ ることと整合する。

図-6に各試験体の耐力比と aldの関係を示す。ald が大きい程,耐力比は低下する傾向が認められ,ipb

シリーズでは ald=3.19, H シリーズでは ald=4.42 の時点で,耐力比が 1.0 を下回る結果となった。こ れは,a/dが大きくなるにしたがい,せん断スパンに 形成される圧縮ストラットの幅が小さくなり,アー チ耐荷機構による耐力増加が期待できないものと考 えられる.また,a/d=3.19の試験体に着目すると, 支点間のみ腐食を生じさせた試験体の耐力比は約 1.2,定着フック有で腐食を生じた場合は約 1.0,定 着フックを有しない試験体の耐力比が約 0.7 であり フック定着部の存在とフック部の腐食劣化性状が耐 荷性状に大きな影響を及ぼし,ipb シリーズをフック 定着部の破断と位置付ければ,定着部に著しい腐食 損傷を生じた場合,せん断耐力が大幅に低下する可 能性がある。

本実験においては,基礎的な実験のため,せん断 補強筋や圧縮鉄筋が配筋されておらず,今後は,こ れら鉄筋が配筋された状態で定着上縁破壊と鉄筋腐 食の関係について更なる検討を進めていく。

5. 結論

本研究では、定着部に腐食劣化を生じた RC はり 部材の載荷試験を行い、定着部の腐食劣化が現有の せん断耐荷性状に及ぼす影響について検討を行った。 以下に本研究で得られた知見を示す。

- (1) 定着部に直角フックを有する主鉄筋のみを配筋した鉄筋腐食 RC はりにおいて、支点間の付着劣化の影響により定着部まで荷重が伝達し、 アーチ耐荷機構が形成された際、支点上縁に負曲げが発生し、定着上縁破壊を呈する場合がある。
- (2) 支点上縁の負曲げの発生は、支点間の付着損失 に伴うコンクリートの変形の増大と、支点外側 領域においてフックが直角を保持してこの変 形に抵抗することにより生じるものと考えら れる
- (3) 耐力の低下割合はフック部の腐食ひび割れの 程度が大きい程,増加する傾向にある。また, ald が大きいほどアーチ耐荷機構による耐力増 加は期待できない。
- 謝辞:東京鐵鋼株式会社よりネジフシ鉄筋を提供い ただいた。ここに感謝の意を表します。

参考文献

- 1) 土木学会:材料劣化が生じたコンクリート構造物の構造性能,コンクリート技術シリーズ71,2006.
- 大屋戸理明,金久保利之,山本泰彦,佐藤勉:鉄 筋の腐食性状が鉄筋コンクリート部材の曲げ性 状に与える影響,土木学会論文集, Vol.62, No.3, pp.542-554, 2006.
- 佐藤吉孝、山本貴士、服部篤史、宮川豊章:鉄筋 腐食の生じた RC 部材のせん断耐荷特性の検討、 アップグレード論文報告集, Vol.4, pp.33-38, 2004.
- 4) 松尾豊史,酒井理哉,松村卓郎,金津努:鉄筋腐 食した RC はり部材のせん断耐荷機構に関する 研究,コンクリート工学論文集, Vol.15, No.2, pp.69-77, 2004.
- 5) 村上祐貴, 董衛, 大下英吉, 鈴木修一, 堤知明: 鉄筋腐食により定着不良を生じた RC 梁部材の 耐荷性状評価, 土木学会論文集 E2, vol.6, No.4, pp.605-624, 2011.12.
- ご羽淳一郎、山田一宇、横沢和夫、岡村甫: せん 断補強鉄筋を用いない RC はりのせん断強度式 の再評価、土木学会論文集、第 325 号、V-5、 pp167-176、1986