微視的破壊挙動に着目したコンクリートの圧縮破壊進行過程のシミュレーション

茨城大学	学生会員	○鈴木	茂成
茨城大学	学生会員	神野	真弥
茨城大学	正会員	車谷	麻緒

1. はじめに

コンクリートは引張強度に比べ, 圧縮強度が高いため, 構造物の材料として使用する場合, ほとんどが圧縮を受 け持つ材料として用いられる.したがって, コンクリー トの圧縮時の破壊挙動を解明することは, 非常に重要な 課題である.しかし,現在に至っても, コンクリートの 圧縮破壊は, 微視的レベルでの破壊メカニズムと巨視的 レベルでの破壊メカニズムの関係は解明されていない.

また、コンクリートは巨視的に見たら均質等方性材料 として扱われるが、微視的に見れば、骨材、モルタルな どから構成される非均質な材料である.そのため、クラ ックの先端部分に破壊進行領域と呼ばれる微細ひび割れ が累積した領域が形成される.この破壊進行領域の力学 挙動について、今まで実験による観察・考察は多く行わ れているが、数値シミュレーションにより再現し確認し た例は少なく、また、微細ひび割れのような微視スケー ルを考慮して破壊に至るまでのプロセスを解析した例に ついてはほとんど存在しない.

そこで、本研究ではコンクリートを対象に微視構造の 離散ひび割れ解析を行い、圧縮時の準脆性破壊の再現を 試みる.

2. モデル化と解析手法

2.1 破壊のモデル化¹⁾

モルタルは、巨視的に見た場合は剛性や強度は均一と して扱われる.しかし、微視的に見た場合、空隙などに より、剛性や強度を低下させられ弱い部分が存在するの で、剛性や強度は均一ではない.そのため、図-1 (a) 左 図のように破壊の発生源が不規則に分布していると考え られるので、図-1 (a) に示すように、幾何学的に不規則 な形状をしているボロノイ要素を用いることにより、不 規則に分布している破壊の発生源を(a) 右図のようにボ ロノイ要素同士の境界で表現する.すると、微細ひび割 れは (b) のように表され、それが進展・連結を繰り返す ことで (c) のように巨視的ひび割れが表される.

ボロノイ分割にはデローニ三角形の外に外心点が作ら れてしまうのを防ぐために内心点を用いている.また, ボロノイ要素の境界は2重節点にしており,本研究では, ボロノイ要素を三角形要素で分割している.よって,有 限要素法を適用している.

図−1 ボロノイ要素を用いたひび割れのモデル化

2.2 解析手法

本研究では¹微細ひび割れの形成・連結・開閉を考慮し たひび割れ進展解析をすることによって、微視構造のひ び割れ解析を行う.

(1) 微細ひび割れの開閉を考慮した弱形式

巨視的な破壊力学モデルである Cohesive crack model を微視構造における微細ひび割れにも適用可能だと考え 導入し,引張軟化則として次式を与える.

$$\left\|\boldsymbol{t}^{\mathrm{coh}}\right\| = f_{\mathrm{t}} \exp\left(-\frac{f_{\mathrm{t}}}{G_{\mathrm{f}}}\kappa\right)$$

ここで、 $\|\mathbf{f}^{coh}\|$ は結合力ベクトルの大きさ、 f_t は引張強度(微細ひび割れの発生強度), G_f は微視的な引張破壊エネルギー、 κ は最大開口変位である.

本研究ではCohesive crack modelを微視的な引張破壊 だけでなく、微視的なせん断破壊にも同様に、引張強度 をせん断強度、引張破壊エネルギーをせん断破壊エネル ギーに置き換えて適用する.

微細ひび割れの開閉をバネ(ペナルティ法)による近 似で表すことにすると、微視構造における微細ひび割れ の開閉を考慮した弱形式は次のように表される.

$$\int_{\Omega} \delta \boldsymbol{\varepsilon} \cdot \boldsymbol{\sigma} \, d\Omega + \int_{\Gamma_{\text{EL}}} \delta \boldsymbol{g} \cdot \boldsymbol{\overline{p}}_{\text{W}} \boldsymbol{g} \, d\Gamma + \int_{\Gamma_{\text{C}}} \delta \boldsymbol{g} \cdot \boldsymbol{\overline{p}}_{\text{C}} \boldsymbol{g} \, d\Gamma$$
$$+ \int_{\Gamma_{\text{FZ}}} \delta \boldsymbol{g} \cdot \boldsymbol{p}^{\text{coh}} \boldsymbol{g} \, d\Gamma = \int_{\Omega} \delta \boldsymbol{u} \cdot \boldsymbol{\overline{b}} \, d\Omega + \int_{\Gamma_{t}} \delta \boldsymbol{u} \cdot \boldsymbol{\overline{t}} \, d\Gamma$$

ここで、 δg は微細ひび割れの仮想開口変位ベクトル、 $\Gamma_{\rm EL}$ は未破壊境界、 $\Gamma_{\rm C}$ は微細ひび割れの接触境界、 $\Gamma_{\rm PZ}$ は接触を伴わない微細ひび割れの境界、 $\bar{p}_{\rm w}$ は弱層を表すペナルティバネ係数行列、 $\bar{p}_{\rm C}$ は微細ひび割れの接触を表すペナ ルティバネ係数行列、 $p_{\rm C}$ は微細ひび割れの開口を表すペ ナルティバネ係数行列、gは不連続面における相対変位 ベクトル、 δu は仮想変位ベクトル、tは表面カベクトル、 **b**は物体力ベクトル、 σ は応力ベクトル、 $\delta \varepsilon$ は仮想ひず みベクトルである.

(2) 破壊の判定

未破壊時の $\Gamma_{\rm EL}$ における境界面上の表面力 λ は,バネの反力として次式のように表せる.

$$\lambda = \lambda_{\rm n} + \lambda_{\rm s} = \overline{p}_{\rm W} \mathbf{g}$$

ここでえれは法線方向内力,えは接線方向内力である. 引張破壊の破壊の判定はこの表面力を用いて次式のよ

うに定める.

 $\boldsymbol{g} \cdot \boldsymbol{n} > 0$ and $\|\boldsymbol{\lambda}\| - f_{\mathrm{t}} = 0$

n は $\Gamma_{\rm EL}$, $\Gamma_{\rm PZ}$ における外向き単位法線ベクトルである. せん断破壊はせん断強度fを設定し,

 $g \cdot n < 0$ and $\|\lambda_s\| - f_s = 0$ とすることで圧縮・せん断の破壊の判定を行う.

3. 空隙を有するコンクリートの準脆性破壊

3.1 解析条件

空隙を有する構造を対象に、微細ひび割れが形成され、 進展・連結を繰り返し巨視的なひび割れへと成長してい く過程を再現する.解析対象は、図-2のような中央に円 形の空隙を有する単純な構造である.材料パラメータは 同図に示す通りであり、縦方向に一軸圧縮ひずみ 0.16 % を 100 ステップで与えることによりひび割れ挙動解析を 行う.

3.2 結果と考察

解析結果を誇張して図-3に示す.まず空隙の上下に応 力が集中し、そこから荷重軸方向にクラックが発生した (図-3 (a)).その後、斜め方向に脆性的にクラックが 発生し、それに伴い初めに荷重軸方向に発生したクラッ クは閉じた(図-3 (b)).そして、斜め方向のクラック が4方向に次々と発生・進展し、荷重軸方向のクラックを 誘発しながらモデル全体の破壊が起こった(図-3 (c),

(d)). これは既往の研究の実験結果²⁾で報告されている破壊挙動と同じであり、シミュレーション結果が、実際のコンクリートの破壊挙動に近い挙動を再現している

ポアソン比	0.2
引張強度 (MPa)	2
引張破壊エネルギー(N/mm)	0.01
せん断強度 (MPa)	6
せん断破壊エネルギー (N/mm)	0.04

図-2 空隙を有するモデル

(c) Step: 64 / 100
(d) Step: 81 / 100
図-3 シミュレーション結果

と言える.

4. おわりに

本研究では、材料の不均一性に起因する微細ひび割れ 挙動をモデル化し、準脆性破壊を実現象に近い破壊挙動 で再現することができた.

この結果をもとに、今後は骨材を考慮したモデルや、 実際のコンクリート断面画像から作成した微視構造モデ ルにおいて、引張強度、せん断強度、破壊エネルギーに 着目し、コンクリートの破壊挙動を再現する.

参考文献

- 車谷麻緒,寺田賢二郎,竹内則雄:微細ひび割れの形成・連結・開閉に起因した準脆性材料の破壊進行メカニズム,土木工学会論文集A, Vol.66, No3, pp.505-515,2010.
- 2) 和泉正哲,三橋博三,佐々木達夫:コンクリートの圧 縮破壊発生機構に関する基礎的研究,日本建築学会論 文報告集,第289号,pp.11-25,1980.