論文 コンクリート表面の温度性状に及ぼす腐食ひび割れの影響に関する研究

中央大学	学生会員	○篠野哲也
中央大学	正会員	大下英吉

1. はじめに

著者ら¹⁾²⁾³⁾はコンクリート構造物中の鉄筋を強制加 熱し,コンクリート表面の温度変化を赤外線サーモグ ラフィで測定することにより,鉄筋の腐食状況を定量 的に評価可能とする新たな非破壊検査システムを構築 している。既往の研究¹⁾²⁾³⁾では,鉄筋が腐食したとし てもコンクリートに腐食ひび割れが生じない状態を想 定したものであった。しかしながら,実構造物では鉄 筋径,間隔,かぶり厚や鉄筋の腐食量によってはコン クリート表面に腐食ひび割れやコンクリートの剥離・ 剥落,錆汁といった現象が生じるため,これらの影響 を加味した鉄筋腐食診断手法の適用性評価ならびに拡 張を行う必要があった。

本研究では、コンクリートの腐食ひび割れの存在が 鉄筋腐食診断手法の推定精度に及ぼす影響を評価する ことを目的として、各種の幅や間隔を有するひび割れ 群がコンクリートの表面温度性状に及ぼす影響を明ら かにする。

2. コンクリート表面の温度性状に及ぼすひび割れ群の 影響

2.1 実験概要

本実験では人工的に鉄筋コンクリート試験体にひび 割れを導入させ、鉄筋には発泡ポリエチレンフィルム を巻き腐食を模擬した試験体において、コンクリート 表面の温度性状に及ぼす影響について検討する。本実 験では、同一の鉄筋腐食率で腐食ひび割れ幅や間隔の みが異なる試験体を対象としなければならない。一般 に、鉄筋の腐食や腐食ひび割れの誘発を促進する手法 には電食方法が用いられる。しかしながら、この手法 では積算電流量を一定にしたとしても鉄筋の腐食率は 場所によって異なるとともに、腐食ひび割れ幅も異な るため、一定の腐食率でひび割れ幅のみが異なる試験 体の作製は不可能である。

まず、発泡ポリエチレンフィルムと人工ひび割れ導

表一1 実験条件

コイル負 荷電力 (kw)	加熱時間 (s)	コイルか ら鉄筋表 面までの 距離(mm)	人工 ひび割れ幅 (mm)	ひび割れ 本数 (本)	腐食率 (発泡ポリエチレン フィルムの厚さ (mm))
1.0 90					0
	43	ひび割れ無し	-	1	
				3	
		1.0	1	0	
				3	
			2	0	
				1	
				3	
		2.0	1	0	
				3	
			2	0	
				1	
					3

入方法について説明する。発泡ポリエチレンフィルム には腐食成生物と同様に、鋼に比べて比熱が大きく熱 伝導率が小さいという熱的特性値を有しており、鉄筋 からコンクリート表面に向かう熱を遮断するとともに 内部に熱を蓄積する効果がある。したがって、本実験 では鉄筋に発泡ポリエチレンフィルムを巻き、人工ひ び割れを発生させた。

試験体は、図−1に示すように150×150×200 mmの形 状寸法であり、かぶり30 mmの位置にD16 鉄筋を配置し た。また、人工ひび割れは鉄筋に到達する程度の鉄板 をかぶり領域に配置し、コンクリートを打設した後に 取り除くことで作製した。ひび割れの位置は、鉄筋の 中心から5 mmずらした場所とした。なお、ひび割れ幅 は、表−1に示すように3種類である。

鉄筋の加熱は、試験体上面に設置した電磁誘導コイ ルに表-1に示す負荷電力を通電し、赤外線サーモグラ

キーワード:非破壊検査,電磁誘導,コンクリート表面温度,ひび割れ 住所:東京都文京区春日1-13-27,電話:03-3817-1892,FAX:03-3817-1803

図-2 鉄筋中心上のコンクリート表面の温度履歴

図-3 熱の拡散の様子

フィによりコンクリート表面の温度を撮影した。 なお、コイルから鉄筋までの距離は表-1 に示 すとおりであり、コイルはかぶり 30 mm面の鉄筋 軸方向にコイルの中心が沿うよう設置した。

2.2 ひび割れ幅の影響評価

図-2は、図-1 に示した試験体の鉄筋軸方 向に直交する中央断面に位置する鉄筋中心直上 のコンクリート表面における温度履歴を示して いる。経過時間は電磁誘導による加熱停止直後 からの時間であり、温度上昇量は加熱前のコン クリート表面温度との温度差である。なお、図 中にはひび割れ毎の温度履歴を示している。

同図(a)に示すように,温度上昇量の最大値は ひび割れ幅の増加に伴って大きくなり,ひび割 れ無しが最も小さくなっている。このような傾 向は,同図(b)に示す腐食鉄筋においても同様で ある。また,健全鉄筋および腐食鉄筋のいずれ においても最高温度からの温度低下量は,ひび 割れ幅の増加に伴って大きくなっている。

このような一連の温度性状を有するメカニズ ムは、図-3を用いて説明することとする。ま ず、電磁誘導加熱により鉄筋に蓄積された熱が コンクリート表面に向かって拡散することにな る。この際、コンクリートにひび割れが存在す

図-4 ひび割れ2本の形状

ると、その断熱効果によりひび割れを伝達して 他のコンクリート領域へ拡散する熱量を抑制す る。したがって、ひび割れ近傍におけるコンク リート表面の温度はひび割れが存在しない状態 に比べて高温となる。また、ひび割れ幅の増加 に伴って断熱効果も向上するため、この傾向は ひび割れ幅に大きく依存することとなる。

2.3 ひび割れ本数の影響評価

ひび割れ2本の試験体は、図-4に示すよう に鉄筋中心から30mm離れた位置に鉄筋から放 射状に人工ひび割れを発生させることにより作 製した。なお、本実験における条件は、表-1 と同じである。

図-5に加熱停止後300秒後の熱画像を示す。 熱画像には鉄筋配筋の位置およびひび割れの位 置を示してある。同図(a)に示すように,ひび割 れ無しの熱画像では鉄筋配筋位置から離れるに したがって徐々に温度が低下し,コンクリート 表面全体に熱が拡散している。一方,同図(b) のひび割れ1本の熱画像においては,ひび割れ 位置において急激に温度低下を生じており,ひ び割れによって熱の拡散が遮断されていること が確認できる。また,同図(c)のひび割れ2本の 熱画像においても,同図(b)と同一の傾向を示し

図-5 加熱停止後 300 秒後の熱画像

ている。

図-6 は鉄筋直上のコンクリート表面におけ る温度上昇量が最大となった時点での鉄筋軸直 交方向の温度分布を示している。まず,同図(a) より健全鉄筋について評価する。温度上昇量は, ひび割れ無しに比べると,ひび割れ幅1mmにお いて 1.2° ,ひび割れ幅 2 mmにおいて 1.6° 高く なっている。また,同図(b)に示す腐食厚 1 mmで は,それぞれ 0.7° , 1.0° 大きくなっており, 同図(c)が示す腐食厚 3 mmの腐食鉄筋はそれぞ れ 0.8° , 1.4° 大きくなっている。これは 2.2節で述べたように,ひび割れ幅の増加に伴って 温度上昇量が大きくなることに関連している。

次に、ひび割れ1本とひび割れ2本の温度上 昇量を比較することとする。図-7に鉄筋直上 のコンクリート表面における温度上昇量の最 大値を示す。同図(a)における健全鉄筋の場合、 ひび割れ幅2㎜ではひび割れ2本の方が1本に 比べると約2.2℃低くなっている。また、同図 (b)に示すよう腐食厚3㎜の腐食鉄筋の場合、い ずれのひび割れ幅においてもひび割れ2本の方 が0.5℃小さくなっており、ひび割れ本数の増 加に伴って温度上昇量が減少している。この理 由としては、ひび割れの角度が大きく影響して いると考えられる。

図-8 はひび割れ無しとひび割れ有りの状態 における熱拡散性状を示している。ここでは, ひび割れ2本の時のひび割れ間の距離である60 mの領域を対象として熱拡散性状を検討する。 コンクリート表面温度は,鉄筋から拡散される 熱量とひび割れの位置および角度によって規定 されるコンクリートの容積で制御される。図中 に対象領域に影響を及ぼす鉄筋の面積を示す。 この面積が広いほど熱量が多いため,これを考 慮してコンクリート表面温度について説明する。

鉄筋軸直交方向の温度分布

ひび割れ無しの試験体では,熱が広範囲に広が り,対象領域外まで拡散する。一方,ひび割れ

2本の試験体では、ひび割れによって熱が対象 領域内に閉じ込められるため、ひび割れ無しに 比べてコンクリート表面温度が高くなる。次に, ひび割れ1本がひび割れ2本よりもコンクリー ト表面温度が高くなった結果について検討する。 図中に示すように、ひび割れ1本の試験体の方 が2本の試験体より対象領域への熱の拡散に影 響を及ぼす鉄筋の面積が広いため熱量が多い。 また、鉄筋からコンクリート表面への熱の拡散 は,温度勾配の違いによって放射状に拡散され る。そのため、ひび割れ1本の際にはひび割れ がコンクリート表面に対して直角にあるため, ひび割れ2本の試験体よりも拡散を妨げられる 熱量が多いことがわかる。したがって、ひび割 れ1本ではひび割れに妨げられた熱量が鉄筋直 上に上昇するためコンクリート表面温度が高温 となる。

3. まとめ

本研究ではひび割れがコンクリート表面の温度 性状に及ぼす影響の評価をした。以下に本研究 で得られた結果を示す。

(1)ひび割れの有無はコンクリート表面の温度 上昇に大きな影響を与え,ひび割れがある場合 はない場合に比べて温度上昇量が大きくなる。 (2) ひび割れがある場合, コンクリート表面の 温度上昇量はひび割れの幅, 位置および角度に 依存する。

(3)鉄筋が腐食している場合でも,ひび割れの 影響は鉄筋が腐食していない場合と同様の傾向 である。

(4) 今後, ひび割れ群の影響程度を加味した評価が必要である。

参考文献

- 1) 堀江宏明,宮口住久,谷口修,大下英吉: 電磁誘導加熱による熱画像処理に基づいた コンクリート内部の鉄筋腐食性状評価に関 する研究,コンクリート工学年次論文集, Vol.29, No.2, pp.685-690, 2007
- 2)大下英吉,堀江宏明,長坂慎吾,谷口修, 吉川信二郎:電磁誘導加熱によるコンクリ ート表面温度性状に基づいた RC構造物の鉄 筋腐食性状に関する非破壊検査手法,土木 学会論文集 E, Vol. 65, No. 1, pp. 76-92, 2009
- 大下英吉,長坂慎吾,倉橋貴彦,谷口修: コンクリート表面温度に基づく鉄筋腐食厚 および腐食率の推定手法に冠する研究,土 木学会論文集 E, Vol.65, No.4, pp.442-458, 2009