減衰に着目した単純な橋梁模型の振動実験とその数値解析

宇都宮大学 学生員 〇大澤 恭平, フェロー 中島 章典

1. はじめに

橋梁などの耐震設計において、対象構造物を適切にモデ ル化し,線形あるいは非線形の時刻歴応答解析を実施して, その耐震挙動を確認することも一般的となってきている. その際,実際の橋梁構造物の剛性,質量のモデル化に加え, 減衰特性も適切にモデル化する必要がある. さらに, 橋梁 全体系を高い精度でモデル化するためには、橋梁を構成す る個々の部材や要素の剛性に加え、減衰特性やその減衰要 因を確認し、これらを適切に橋梁全体系モデルに組み込ま なければならない.

そこで本研究では、まず、鋼材および鉄筋コンクリート の材質の異なる梁部材を対象として単純な橋梁モデルによ る低次の減衰自由振動実験を行い振動特性を調べる.同時 に, 上部構造の自由振動実験および支承部の要素実験を行 い,橋梁を構成する要素の減衰特性を把握する.その後, 要素実験で求めた減衰特性を解析モデルに組み込み、振動 挙動を時刻歴応答解析により再現することを試みるととも に減衰要因を把握することを目的とする.

振動実験 2.

(1) 実験の概要

本研究では、図-1に示すような単純支持梁を対象とし、 減衰自由振動実験を行った. 試験体はスパン 2000mm の 一様な矩形断面を持つ鋼材であり、断面寸法を表-1に示 す.実験では1次振動モードおよび2次振動モードの減衰 自由振動時の挙動を調べるために、各振動モードを対象と した振動実験を行った.1次振動モードでは梁のスパン中 央部に瞬間的な外力を作用させて減衰自由振動状態にある 梁のひずみを計測した.2次振動モードでは、振動の節と なるスパン中央部を指で軽く固定し、振動の腹の位置に外 力を作用させるのと同時に指を離し,減衰自由振動状態に ある梁のひずみを計測した. 梁のひずみはひずみゲージに より測定し、その計測位置は、可動支承部よりスパン1/4、 1/2の2点で、各振動モードにおいて振動の腹となる位置 でひずみを計測した.

(2) 要素実験

単純支持梁の本実験に先立ち、上部構造部材および支承 の可動部、回転部の減衰性状を把握するためにそれぞれ以 下のような要素実験を行った.

a) 部材の自由振動実験

上部構造と同じ断面を有する鋼材の片持ち梁を対象とし て, 梁の先端に瞬間的な外力を作用させた直後の減衰自由 振動状態にある片持ち梁基部付近のひずみを計測した. な お、1次振動モードのみを対象として実験を行い、減衰自

図-1 単純支持梁

Fixed	bear	rıng
(Dimensi	ion :	mm)

表—1	試験体の断面	面諸量
n \.	$\langle \rangle$	11 00 1

E =E =	
断面の高さ (m)	11.82×10^{-3}
断面の幅 (m)	49.75×10^{-3}
断面 2 次モーメント (m ⁴)	6.846×10^{-9}
弹性係数 (GN/m ²)	206.73
単位体積重量 (kN/m ³)	75.93

由振動実験で得られたひずみ振幅と振動波数の関係から材 料内部減衰に起因する減衰定数 hs を算出し hs=0.001655 を得た¹⁾.

b) 動摩擦試験

可動支承部の摩擦減衰に関係する摩擦力を把握するため に動摩擦試験を行い、動摩擦係数を求めた. この試験は重 りを載せた可動支承をローラー付きの台に固定し、重り に加える水平力を小型ロードセルで、支承部の水平変位を レーザー変位計で計測した. 摩擦力と水平変位の関係を表 す履歴ループから動摩擦係数 µ'=0.007488 を算出した²⁾.

c) 実体振り子試験

支承ヒンジ部の回転による減衰を把握するために、図-2に示すように支承の上沓部に鋼板を複数枚重ねてネジで 固定したものを1つの剛体とし、この剛体を支承の回転軸 周りで振動させ実体振り子とし,振り子頂部に加速度計を 設置し振動時の加速度を計測した.

ここで、実験から求めた慣性モーメント、ばね定数、摩 擦力を入力し支承の回転運動に起因する減衰定数をパラ メーターとして試行錯誤的に変化させて解析を行い、実験 結果の振動波形と解析結果の振動波形が一致するときの減 衰定数を同定する. 図−3は、実験で得られた加速度を回転 変位に変換した振動波形 (上図) および解析で得られた回 転変位振動波形(下図)を示しており、縦軸は回転変位を、 横軸は時間を表している.実験結果と解析結果から,支承 の回転運動に起因する減衰定数は $h_r=0.00050$ となった.

3. 数值解析

のように表される.

(1) 解析の概要

実験で用いた単純支持梁を,図-4に示すように平面の はり要素を用いた有限要素法により34節点33要素にモデ ル化し時刻歴応答解析を行った.また,解析モデルの構築 にあたって断面諸量や材料特性,上部構造の張り出し部分 の影響を考慮した.支承部分においては,支承を上沓部, 下沓部,基部の3つの要素に分け,図-4に示すように可 動支承は要素番号24,26,28に,固定支承は要素番号30, 32,33にそれぞれ対応している.支承のヒンジ部にあたる 要素番号25,31および,可動部にあたる要素番号27には 水平,鉛直,回転ばねからなるばね要素を設定し,それぞ れの条件を満たすようにばね定数を定めた.本実験では, 可動支承および固定支承を剛な橋脚を介して鋼製フレーム に強固に固定しているため,橋脚は考慮せず,支承部の下 沓部から上の部分をモデル化した.

(2) 減衰のモデル化

本研究では、単純支持梁の減衰特性のモデル化に際して、 鋼材の材料内部減衰に起因する粘性減衰、可動支承部の 摩擦減衰、支承のヒンジ部の回転運動に起因する減衰の影響を考慮する.時刻歴応答解析において、単純支持梁の材 料内部減衰に起因する粘性減衰は、剛性比例型の減衰マト リックスとしてモデル化を行った.剛性比例型の場合、減 衰マトリックス C は剛性マトリックス K を用いて、以下

$$\boldsymbol{C} = \frac{h}{\pi f} \boldsymbol{K} \tag{1}$$

そこで、上部構造部材の減衰マトリックス C_s は、片持ち 梁とした上部構造部材の1次振動モードの減衰定数 h_s 、単 純支持梁の固有値解析によって得られた1次または2次振 動モードの固有振動数 f_s 、そして上部構造部材の剛性マト リックス K_s から、以下のように示される.

$$\boldsymbol{C_s} = \frac{h_s}{\pi f_s} \boldsymbol{K_s} \tag{2}$$

可動支承部については、上述したように支承部は水平ば ね、鉛直ばね、回転ばねからなるばね要素を考慮してモデ ル化した.そして、既往の研究³⁾を参考に、可動部を表す 水平ばねを摩擦を考慮した復元力特性を有するものとし、 可動支承部にかかる動摩擦力を要素実験から求めた動摩擦 係数を用いて算出し解析モデルに組み込んだ.可動支承部 にかかる動摩擦力は動摩擦係数 μ' と、可動支承が負担す る重量 N より、以下のように算出した.

$$F = \mu' N \tag{3}$$

支承のヒンジ部の回転運動に起因する減衰については, 単純支持梁の振動実験時の回転運動に対応する範囲ではほ とんど摩擦がなく粘性が支配的であると仮定し,粘性減衰 として考慮する回転ダッシュポットを設置し,要素実験か

図-6 ひずみ振幅-振動波数関係(1次振動モード)

ら求めた減衰係数を組み込んだ.この時,支承のヒンジ部の回転運動に起因する減衰係数は C_r は,要素実験における実体振り子の固有円振動数 p_r および減衰定数 h_r ,支承上沓部と鋼板からなる剛体の慣性モーメント I_r より,以下のように算出した⁴⁾.

$$C_r = 2p_r h_r I_r \tag{4}$$

4. 実験結果と解析結果の比較

単純支持梁において、各振動モードを対象とした減衰自 由振動実験で得られた振動は対象とした振動モードのみで はなく、複数のモードが混合した複合波である。そこで、 本研究ではフーリエ変換および数値フィルタを用いて、実 験で得られた複合波から注目する振動モードの自由振動波 形を抽出し、各振動モード毎に振動特性を調べた。

(1) 1次振動モードの場合

単純支持梁を対象とした減衰自由振動実験によって得ら れた振動波形に,数値フィルタを用いて抽出した1次振動 モードのひずみ波形を図-5(上側)に示す.また,上部構 造の材料内部減衰,可動支承部の摩擦減衰および支承ヒン ジ部の回転による減衰を考慮した解析結果も図-5(下側) に示す.この図から,1次振動モードでは摩擦減衰の影響 を強く受け,ひずみ振幅は直線的に減衰しているが,その 影響をも考慮した解析結果がその挙動を再現している.

表-2	減衰定数	の比較(1	次振動モー	ド)
-----	------	------	---	-------	----

	/
解析値と実験値	減衰定数 h
解析值	1.182×10^{-3}
(材料内部減衰)	
解析値	1.384×10^{-3}
(材料内部減衰+摩擦減衰)	
解析値	1.875×10^{-3}
(材料内部減衰+摩擦減衰+回転減衰)	
実験値	1.911×10^{-3}

図-7 FFT 解析結果 (1 次振動モード)

さらに、これらの振動波形からひずみ振幅と振動波数の 関係を図-6に示す.ここで、図中の黒線は単純支持梁の 実験値であり、赤線は材料内部減衰のみを考慮した解析値、 青線は材料内部減衰および可動支承部の摩擦減衰を考慮し た解析値、緑線は材料内部減衰、可動支承部の摩擦減衰、 支承ヒンジ部の回転運動に起因する粘性減衰を考慮した解 析値をそれぞれ表している.

図-6を見ると、減衰要因を増やしていくことで解析値が 実験値に近づき、支承ヒンジ部の粘性減衰まで考慮した時 の解析値の傾きが実験値の傾きとほぼ一致していることが わかる.また、実験結果と解析結果の減衰定数の値を比較 した表-2からも、実験値は1.911×10⁻³、支承ヒンジ部 の粘性減衰まで考慮した解析値が1.875×10⁻³であり、相 対誤差は1.92%となり比較的高い精度で再現していること がわかる.

一方,減衰自由振動実験時のひずみデータと時刻歴応答 解析結果より得られたひずみデータにそれぞれフーリエ変 換処理を行い固有振動数を求めたものを図-7に示す.そ の結果,実験値と解析値がともに6.84Hzとなり一致した. 以上のことから,1次振動モードにおいて実験結果と解析 結果を比較すると,固有振動特性および減衰特性を精度よ く再現できている.

(2) 2次振動モードの場合

1次振動モードの場合と同様に数値フィルタを用いて抽 出した2次振動モードのひずみ波形の実験結果を図-8(上 側)に,解析結果を図-8(下側)にそれぞれ示す.この図か

図-9 ひずみ振幅-振動波数関係 (2次振動モード)

ら,実験値と解析値ともに2次振動モードでは振幅が指数 関数的に減衰していることから,粘性による減衰が支配的 であると考えられる.

次に、ひずみ振幅と振動波数の関係を示した図–9を見 ると、解析結果は直線的であるのに対し、実験結果は曲線 が上に凸の形となっていることから実際には摩擦による減 衰が働いている.しかし、実験結果と解析結果の減衰定数 の値を比較した表–3から.材料内部減衰のみを考慮した 解析値と可動支承部の摩擦減衰まで考慮した解析値が一致 しているおり、可動支承部の摩擦減衰は働いていないこと から、支承ヒンジ部の回転運動による摩擦が働いている可 能性が考えられる.また、減衰定数の値で比較してみると、 実験値は1.714 × 10⁻³、支承ヒンジ部の粘性減衰まで考 慮した解析値が1.662 × 10⁻³であり、相対誤差は3.13%と なり1次振動モードよりは大きな誤差となっているが、摩 擦による減衰も考慮することで解析結果は実験結果に近づ くと考えられる.

一方,1次振動モードと同様に実験結果と解析結果にそれぞれフーリエ変換処理を行い固有振動数を求めたものを図-10に示す。その結果、実験値が27.35Hz,解析値も27.35Hzとなり2次振動モードにおいても実験結果と解析結果が一致した。以上のことから、2次振動モードにおいて実験結果と解析結果を比較すると、固有振動特性は精度よく再現できているが、減衰特性については再現できてい

表-3 減衰定数	の比較 (2	次振動モー	ド)
----------	--------	-------	----

	/
解析値と実験値	減衰定数 h
解析值	1.182×10^{-3}
(材料内部減衰)	
解析值	1.182×10^{-3}
(材料内部減衰+摩擦減衰)	
解析値	1.662×10^{-3}
(材料内部減衰+摩擦減衰+回転減衰)	
実験値	1.714×10^{-3}

図-10 FFT 解析結果 (2 次振動モード)

るとは言えない.この理由としては前でも述べたように, 支承ヒンジ部の回転運動においても粘性減衰の他に摩擦力 が働き摩擦減衰が生じていた可能性があり,この摩擦力を 解析に考慮していなかったことが考えられる.

5. おわりに

本研究では、単純な橋梁模型を対象とした振動実験と橋 梁を構成する要素の減衰特性を考慮した数値解析を行い、 実験結果と解析結果を比較し、実構造の振動特性の再現 を試みた.その結果、1次振動モードについては固有振動 特性および減衰特性を再現することができたが、2次振動 モードについては支承ヒンジ部の摩擦力による減衰の影響 により減衰特性を1次振動モードほど精度よく再現するこ とができなかった.

今後は、上部構造の材質を変え、鉄筋コンクリートを用 いた単純支持梁を対象とした減衰自由振動実験と平面のは り要素を用いた有限要素法によりモデル化した数値解析を 行い、実験値と解析値を比較し、実構造の振動特性の再現 を試みる予定である.

参考文献

- 中島章典、白木聡仁:支持条件と長さが異なる梁部材の構造 減衰に関する基礎的研究、土木学会第65回年次学術講演会、 2010.9.
- 2) 中島章典,緒方友一,笠松正樹,横川英彰:高架橋模型の強 制振動実験と減衰のモデル化に着目したその数値解析,構造 工学論文集, Vol55A, pp.306-316, 2009.3.
- A.Nakajima, Y.Furuhashi, I.Saiki: Experiment and analysis on vibration characteristics of viaduct bridge model, Symposium on Environmental Issues Related to Infrastructure Development, 2003.8.
- 4) 福田義一:基礎教養 物理学(上), pp.49-53, 廣川書店, 1968.