鋼トラス橋の格点部の終局限界状態に関する解析的検討

早稲田大学	学生員	○李	殷在	(独)	土木研究所	正会員	遠山	直樹
早稲田大学	正会員	笠野	英行	(独)	土木研究所	正会員	澤田	守
早稲田大学	フェロー会員	依田	照彦	(独)	土木研究所	正会員	有村	健太郎
首都大学東京	フェロー会員	野上	邦栄	(独)	土木研究所		郭	路
(独) 土木研究	所 正会員	村越	潤					

1. 研究目的

平成19年8月1日,米国ミネソタ州ミネアポリス市に おいて発生したミシシッピ川にかかるI-35W橋(鋼トラ ス橋)の崩落事故に代表されるように,近年鋼トラス橋 における重大損傷(主部材の腐食など)の事例が数多く 見受けられる.

I-35W 橋崩落事故ではガセット格点部の脆弱性が橋梁 の崩落に大きく影響したと考えられており¹⁰,格点部の力 学的挙動の重要性が指摘されている.そこで,本研究で は実際の鋼トラス橋の格点部を対象にして,力学的挙動 を調べ,既設のトラス橋の格点部の終局限界状態を調べ ることを目的とする.

2. 解析モデル

本研究では、有限要素法の汎用ソフトDIANA²を用いて 解析を行った.図-1に今回対象とする格点部を示す.今 回の解析では、健全な状態を仮定して、設計時の格点部を 対象にした.図-2に示すように、鋼トラス橋の格点部をシ エル要素を用いてモデル化した.斜材とガセットプレー トを結合するリベットには、ばね要素を用いた.また、圧 縮斜材が部材として座屈する可能性を考え、実構造物で の力学的挙動と比較するために圧縮側の斜材の部材長を 実構造物と同じものにしたモデル(図-3に示す)も作成し た.

部材軸方向 正縮荷重 引張荷重

ガセット幅にかけて、下フランジおよびウェブを固定

3. 解析手法

図-2 に示すモデルについては,表-1 に示す 3 つの CASE に分けて解析を行った.

表-1 載荷方法(その1)

CASE-1	斜材に圧縮荷重のみを載荷する.
CASE-2	斜材に引張荷重のみを載荷する.
CASE-3	斜材に圧縮荷重,引張荷重を同時に載荷する.

キーワード ガセットプレート,格点部,FEM 解析,鋼トラス橋 連絡先 〒169-8555 東京都新宿区大久保 3-4-1 早稲田大学社会環境工学科 依田研究室 TEL03-5286-3399 また,図-3 に示すモデルについては表-2 に示す 2 つの CASE に分けて解析を行った.

	表-2 載荷方法(その2)
CASE-1'	斜材に圧縮力のみを載荷する.
CASE-3'	斜材に圧縮荷重,引張荷重を同時に載荷する.

このとき, 弦材の下フランジおよびウェブを完全に固 定し, 載荷面は部材軸方向以外の変位を全て拘束した. 全ての CASE について, 荷重を 100kN ずつ段階的に増加さ せて載荷した. 100kN の荷重増分段階では解析計算が収 束しなくなった場合には, 弧長増分法に切り替え, より小 さな荷重増分で解析計算を続けた. 解析計算が収束する 最後の段階での載荷荷重を FEM による終局荷重とみなし た. 降伏は von Mises の降伏条件によった.

4. 解析結果

圧縮,引張を同時に載荷した解析(CASE-3, CASE-3')に より得られた変形・相当塑性ひずみ分布図を図-4に示し, 各 CASE の終局荷重と終局限界状態を表-3 にまとめた.

5. 考察

表-3より, CASE-3, CASE-3'ともに終局荷重が変わらず, 圧縮斜材ウェブのしぼり部付近の局部座屈で終局に至っ たことがわかる.このことにより,今回対象にした格点部 の構造では圧縮斜材の部材座屈より先にしぼり部分が局 部座屈することが予想される.同様に CASE-2 のように引 張荷重のみをかけた場合においても引張斜材のしぼり部 付近に応力が集中し,破断に至ることが予想される。今回 対象とした圧縮斜材および引張斜材は,ガセットプレー トに接続されるしぼり部付近が脆弱であると考えられる. よってこのしぼり部付近を含め,格点部の終局限界状態 については,引き続き検討していく必要がある.

謝辞:本研究は、3者((独)土木研究所、首都大学東京、 早稲田大学)による、腐食劣化の生じた橋梁部材の耐荷性 能の評価手法に関する共同研究の一環として行なったも のであり、建設技術研究開発助成を受けて実施されたも のである.

表-3	FEM 解析から	得られた終局荷	奇重および終局限界状態
-----	----------	---------	-------------

	載荷荷香	 	終局荷重
	戰刑刑里	彩印成小小岛	(kN)
CASE-1	圧縮	圧縮斜材の局部座屈	3500
CASE-2	引張	引張斜材の破断	5680
CASE-3	圧縮+引張	圧縮斜材の局部座屈	3490
CASE-1'	圧縮	圧縮斜材の局部座屈	3480
CASE-3'	圧縮+引張	圧縮斜材の局部座屈	3420

(b-1)CASE-3'

図-4 変形(50倍)・相当塑性ひずみ図

参考文献

 1) 笠野英行,依田照彦:米国ミネアポリス I-35W 橋の 崩壊メカニズムと格点部の損傷評価,土木学会論文集 A, 2010.

JIP テクノサイエンス: DIANA9 ユーザーマニュアル日本語参考資料(解析手法), 2005.