中央大学大学院	学生会員	池田	春樹
中央大学	学生会員	鳥谷	直史
中央大学	正会員	大下	英吉

1.はじめに

近年,既存の鉄筋コンクリート構造物の経年劣化に 伴い,耐久性能の低下が深刻な問題となっており,適 切な維持管理体制の確立が叫ばれている.特に,中性 化や塩害に起因する RC 構造物の鉄筋腐食は、構造物の 耐荷性能に大きな影響を及ぼす劣化現象であり,腐食 性状に応じた残存耐荷性能を定量的に評価することが, 実構造物の耐荷性能を予測する上で極めて重要である。

鉄筋腐食に関する既往の研究では, 主鉄筋の腐食膨 張によってかぶりコンクリートに発生する腐食ひび割 れの存在が RC 梁部材の耐荷性能低下に大きな影響を 及ぼすことが報告されている.そこで著者らは,その 要因の一つとして考えられるダボ効果に及ぼす鉄筋腐 食の影響に着目し, 引張主鉄筋を 1 本のみ有する試験 体を用いて逆対称加力実験を実施した.その結果,腐 食試験体では健全試験体に比べてダボ効果の影響領域 は拡大し,鉄筋の変形も増大するという知見を得た.

しかしながら,複数本の主鉄筋を有する試験体では, 腐食ひび割れ性状が異なり,かぶりコンクリートの一 体性が喪失するため,主鉄筋を1本有する試験体と比 較してダボ効果に大きな影響を及ぼすものと考えられ る.

そこで,本研究では複数本の主鉄筋を有する試験体 に関して、腐食ひび割れ性状の相異が RC 梁部材のダボ 効果に及ぼす影響を評価した.

2.実験概要

2.1 試験体概要および実験パラメータ

試験体の形状寸法および配筋を図 - 1 に示す.試験体 は 240 × 200 × 1000mm の RC 梁部材であり 軸方向中心 位置には幅 12mm の切り欠きを導入した.引張主鉄筋 には D22(SD345)異形鉄筋を3本配筋し, 主鉄筋のかぶ りは 40mm である.また,コンクリートの配合は表-1 に示す通りである.なお,配筋した3本の主鉄筋を識 別するため,両外側鉄筋をL,R鉄筋,中央鉄筋をM

実験概要および各種測定方法

衣 - 「 コノクリートの配合									
G _{max}	W/C	SL	Air	Air 単位量(kg/m ³)					
(mm)	(%)	(cm)	(%)	W	С	S	G	混和剤	NaCl
20	60	10	5.0	168	280	826	996	2.80	8.8

表 - 2 実験パラメータ

試験体名	主鉄筋本数	目標腐食率(%)	
W-0	2*	0	
W-2	34	2	

鉄筋と称することとする.

実験パラメータは目標腐食率とし,表-2に示すよう に 0%と 2%の 2 水準とした. なお, 著者らが実施した 主鉄筋を1本有する試験体のうち健全試験体を N-0, 腐食試験体を N-2 と称する.

2.2 腐食方法

本実験では,腐食方法に電食試験法を採用した.試 験体は 5% NaCl 水溶液に浸漬し,鉄筋を陽極側,銅板を 陰極側に接続し,直流定電流 6A を通電した.本研究に おいては,鉄筋腐食の評価手法として,腐食率(腐食前 後の鉄筋の質量減少率)を用いることとした.なお,腐 食前の鉄筋の質量は配筋の前に直接計測し,単位長さ 当りの質量は一定と仮定した.載荷試験終了後はつり 出した鉄筋は,20 の 10%濃度クエン酸二アンモニウ ム溶液に24時間浸漬させ,腐食生成物を除去した後に 質量を計測した.なお,主鉄筋は全体の腐食率測定後 に 50mm 間隔で切断し,局所的な腐食率も計測した.

2.3 実験方法

実験は、図 - 1 に示すように逆対称加力式載荷方法に

キーワード ダボ効果,ダボ作用,鉄筋腐食,腐食ひび割れ,曲率 連絡先 〒112-0003 東京都文京区春日 1-13-27 TEL 03-3817-1892

より実施した¹⁾.支点間隔および載荷点間隔は,切り欠き位置における主鉄筋の曲率が0となるように定め, 切り欠きを導入することで,実際のRC梁部材に存在す る圧縮部コンクリートや骨材のかみ合いによるせん断 伝達の影響を取り除き,鉄筋のダボ作用のみの評価を 可能とした.引張鉄筋がコンクリートのかぶりを押す ダボ効果の影響領域は350mmとし,載荷速度を 0.5mm/minとした変位制御により実施した.なお,載荷 点と試験体が接する箇所にはテフロンシートを敷き, 摩擦の影響を低減した.

測定項目は,荷重,切り欠き位置におけるコンクリ ートの変位,および鉄筋上下面の鉄筋軸方向ひずみで ある.鉄筋ひずみの計測は,鉄筋の上下両面に幅 3mm ×深さ 3mmの溝を軸方向に切削加工した箇所にひずみ ゲージを貼付して行った.同図(a)に示すようにひずみ ゲージは切り欠きから 6Dの区間において,1D(22mm) 間隔で貼付し,それ以外の箇所においては 3D(66mm) 間隔で貼付することで,切り欠き位置近傍の詳細なひ ずみを得ることとした.また,同図(c)に示すように切 り欠きを挟む左右のコンクリートの上端と鉄筋位置の 計4箇所において変位を測定した.なお,鉄筋ひずみ の計測はM鉄筋において行い,両外側鉄筋には通常鉄 筋を用いた.

3. コンクリートの腐食ひび割れ性状と荷重の載荷に よるひび割れ進展状況

3.1 コンクリートの腐食ひび割れ性状

(1) 鉄筋の腐食性状

主鉄筋3本の平均腐食率を表-3に示す.主鉄筋全体 の平均腐食率は,50mm間隔で計測した値の平均値であ り,目標腐食率である2%に近い値を示した.また, 50mm間隔で計測した腐食率の変動係数は0.27,最大局

所腐食率は 5%未満であることから,際立った不均一性 はない.図-2に腐食試験体の主鉄筋の腐食率分布を示 す.同図中の 500mm の位置にある青い直線は切り欠き 位置を示し,ダボ効果により水平ひび割れが発生する 側のコンクリートを左側に示した.同図においても鉄 筋腐食は梁全長にわたり比較的均一であることが確認 されるが,切り欠き近傍において防錆剤を塗布したた めに腐食率が小さくなっていることがわかる.

(2) 腐食ひび割れ性状に及ぼす主鉄筋本数の影響

図 - 3 に腐食試験体底面のかぶりコンクリートおよ び端面に発生した腐食ひび割れ性状を示す.図-3(a) に示すように 主鉄筋を1本有する試験体においては, 底面に引張主鉄筋に沿った腐食ひび割れが梁全長にわ たって発生した.これは,図-4(a)に示すように鉄筋 の腐食膨張圧の影響であり,最もかぶりの小さい底面 に向かって腐食ひび割れが進展したためである.一方, 試験体 W-2 においては,腐食ひび割れは図-3(b)に示 すように両外側主鉄筋に沿って梁全長にわたり発生し た.これは図 - 4(b)に示すように両外側鉄筋のかぶり コンクリートの一端が自由端であり,鉄筋の腐食によ る膨張圧が直接作用することでひび割れが発生したた めである.しかし, M 鉄筋のかぶりコンクリートには M 鉄筋自体の腐食膨張圧が作用する一方で,両外側鉄 筋の腐食による膨張圧が M 鉄筋に沿ったひび割れの発 生を抑制しているものと考えられる.また,図-3(b) に示すように,試験体 W-2 では端面においても3本の 鉄筋を結ぶ形で腐食ひび割れが生じた.図-3のひび割 れに示した数値はひび割れ幅の平均値を示しており, ひび割れに沿って 25mm 間隔で計測したひび割れ幅の

値から算出した平均値を示している.載荷実験におい てダボ効果を生じさせるのは左側半分であるが,同図 より主鉄筋を 1 本のみ有する試験体では平均値が 0.33mm であるのに対し,試験体 W-2 では L 鉄筋が 0.16mm, R 鉄筋が 0.19mm となり,鉄筋が 1 本の試験 体はひび割れ幅を拡大する.

3.2 荷重の載荷に伴うひび割れ進展状況

(1) せん断力とせん断変形量の関係

表 - 4 に各試験体の破壊荷重,図-5 に切り欠き位置 において鉄筋が伝達するせん断力とせん断変形の関係 を示す.なお,同図には主鉄筋を1本のみ有する試験 体の結果も併せて示す.また,せん断変形は試験体上 側に設置した変位計の値より算出し,図-6(a)に示す ように,載荷時に水平ひび割れが発生するコンクリー トが上にずれる変形を正の値とした.

図-5より,試験体 W-2 は載荷初期の段階から正の せん断変形を生じているが,それ以外の試験体では, 負の変形を生じている.これは,前掲の試験体 W-2 に おいて鉄筋同士を繋ぐ腐食ひび割れによりかぶりコン クリートの一体性が喪失し,鉄筋が変形しやすくなる ため,正のせん断変形を引き起こしているものと考え られる.一方,その他の試験体においては鉄筋の変形 がコンクリートに拘束されているため,荷重が増加し ても水平ひび割れが発生しない限りせん断変形は生じ ない.特に,試験体 W-0 においては図-6(b)に示すよ うに,鉄筋がコンクリートにめり込むことで,左側の コンクリートのかぶりには鉛直下向きの力がはたらき, 切り欠きを挟んでもう一方のコンクリートには鉛直上 向きの力がはたらく.そのため梁全体の負の変形が顕 著に表れている.図-7に破壊エネルギーを示す.破壊 エネルギーは、図-5を用いてせん断力を変位で積分し、 リガメント面積で除することで算出した.積分区間は 載荷開始から水平ひび割れ発生後に荷重が極小となる までの区間とし、リガメント面積は影響領域(350mm) の鉄筋位置水平断面において上部コンクリートとかぶ リコンクリートが接合している面積を用いた.なお, 同図よりピーク荷重後のせん断力は鉄筋の曲げ剛性に よって受け持たれるが,鉄筋本数と終局せん断力には 比例関係が認められ,ダボ効果のみの破壊エネルギー を算出する上で鉄筋の曲げ剛性を取り除くことが可能 であることを示唆している.同図より,腐食に伴い破 壊エネルギーは低下し,同等の腐食率であっても,腐

食ひび割れ性状の相異から主鉄筋を 3 本配筋したもの の方が変形し易く,破壊に至るまでのエネルギーが小 さいことがわかる.

(2) 破壊ひび割れ性状とひび割れの進展

図 - 8 に載荷試験後の破壊ひび割れ性状を示す.破壊 ひび割れは,どの試験体においても最大せん断力を示 した時点で切り欠き位置と支点のおよそ中間位置まで 水平に発生し,荷重が低下した後にひび割れは支点に まで進展した.

4. 複数主鉄筋を有する RC 梁部材のダボ作用に及ぼす 鉄筋腐食の影響

各試験体の鉄筋軸ひずみ分布を図 -9 に,曲率分布を 図 - 10 に示す.鉄筋軸ひずみ *ε*_s と鉄筋の曲率 φ(x) は鉄筋の上面と下面に貼付したひずみゲージにより計 測した値より,式(1)を用いて算出した.

$$\overline{\varepsilon}_{s}(x) = \frac{\varepsilon_{t} + \varepsilon_{b}}{2} \qquad \phi(x) = \frac{\varepsilon_{t} - \varepsilon_{b}}{D} \tag{1}$$

ここで, ε_i :鉄筋の上面ひずみ, ε_b :鉄筋の下面ひ ずみであり, D は鉄筋径の 22mm から鉄筋上下表面に 加工した溝の深さ 6mm を差し引いた 16mm を用いて算 出した.なお,図中には 20kN 毎の載荷荷重および破壊 時の載荷荷重におけるひずみを示している.載荷荷重 を 20kN 刻みで示しており,その時点での切り欠き位置 せん断力を括弧内に示す.

図 - 9 より,鉄筋軸方向ひずみはどちらの試験体にお いても切り欠き近傍でコンクリートの付着力が作用し ない切り欠き位置において引張応力が生じている.ま た,図-10より試験体 W-0 においては載荷初期の段階 から切り欠き位置が鉄筋の変形の変曲点となっており, 対称な曲率分布が得られたのに対し,試験体 W-2 にお いては,荷重の増加に伴って変曲点の位置が左に移動 し,水平ひび割れ発生時には鉄筋径の約5 倍の位置が 変曲点となった.図-11 にこの変形の概念図を示す. 試験体 W-2 においては図 - 12(b)に示すように鉄筋同 士を繋ぐ腐食ひび割れによりかぶりコンクリートの一 体性が喪失しており,せん断変形を生じ易く,コンク リートと切り欠きの境界で曲げ変形が生じたために変 曲点が左に移動したものと考えられる.影響領域に関 しても、健全時には鉄筋径の約9倍であったのに対し, 試験体 W-2 では,せん断変形が増大したために支点近 傍にまで拡大した.このことから,鉄筋を3本配筋し た腐食試験体は主鉄筋1本の腐食試験体に比べて腐食 ひび割れ性状が異なり,荷重の増加に伴う鉄筋の曲率 分布の変遷に大きな影響を与えるものである.よって, 鉄筋腐食した RC 梁のダボ作用を評価する際には主鉄 筋本数に応じた腐食ひび割れ性状に着目して検討する 必要があるといえる.

5. 結論

本研究によって得られた知見を以下に示す.

(1) 主鉄筋を3本配筋した RC 梁では,鉄筋間を繋ぐ腐 食ひび割れによりかぶりコンクリートの一体性が 喪失し,1本配筋した場合に比べ,破壊エネルギー は低下し,変曲点の位置も支点方向へ移動する.

参考文献

 新井 泰ほか:鉄筋腐食が部材の強度特性に及ぼす 影響に関する実験的研究,コンクリート工学年次論 文集, Vol.27, No.2, pp.739-744, 2005