市街地氾濫を対象とした津波数値計算の精度の検証

健太	○柴山	学生会員	防衛大学校
良典	鴫原	正会員	防衛大学校
功司	藤間	正会員	防衛大学校

1. はじめに

2004年インド洋津波をはじめとする過去の津波災害 では、密集市街地を津波が氾濫することで構造物に壊 滅的な被害を与えることが度々確認されてきた.よっ て有効な津波防災対策を立案するためには、事前に信 頼性の高い津波数値計算により遡上津波が構造物に及 ぼす影響を検討し、その安全性を把握することが重要 である.従来の津波遡上計算では、構造物の抵抗とし てManning粗度を土地利用ごとに与える抵抗モデルが 一般的であった(小谷ら、1999)が、近年では数m程 度の空間解像度で構造物を不透過性の地形の一部とし て扱う地形モデルが使用されるようになってきた(藤 間ら、2007).しかしながら、地形モデルを利用した津 波計算を行う場合、構造物周辺の平面的な津波流況の 再現精度に関する知見が未だ不十分である.

そこで本研究では、市街地の津波氾濫に関する水理 実験を行い、2次元平面問題の津波遡上計算について再 現精度の考察を行った.

2. 水理実験の概要

沿岸部の市街地を氾濫する津波について,水理実験を 実施した.図1に示すような平面水槽(1/100スケール) を用い,一様勾配の陸上域に 10cm 角の構造物模型を 10cmの間隔で16個(4×4配列)配置した.ここで構造 物の配置関係は図2と図3に示すような2パターンとし, 津波の進行方向にCase1では6点(A~F), Case2では 8点(A~H)の位置において超音波変位計を利用して陸 上浸水深を計測した.

入射波条件としては、5秒間で造波板を36cm前方に押 し出すことで津波を造波させる(図4参照).これにより, 沿岸を伝播する津波の形態としては非砕波で遡上するこ とになる.なお、実験結果では、構造物がない場合の通 過波においてA点の位置では3cm(実スケールで3m) の最大浸水深になる.

図3 構造物の配置条件(Case2)

3. 計算方法および計算条件

数値計算手法は支配方程式が浅水理論(非線形長波 理論)であり, Staggered leap-frog 差分法により数

連絡先 〒239-8686 神奈川県横須賀市走水 1-10-20 防衛大学校 建設環境工学科 TEL:046-846-3810 (内線 3524)

値解を求めた(計算手法の詳細は,後藤ら,1982を参照). また,設定した空間格子間隔として,10cm角の構造物模型を地形モデルで表現可能な3段階の格子間隔 (Δx=Δy=1,2,5cm)について計算を実施した.時間ス テップは1.0×10⁻⁴sとし,再現時間は15秒間とした.

4. 計算結果

計算結果として,各ケースにおける最大浸水深の計算 値と実験値の比較を図5と図6に示す.

(1) Case1 について

図 5 は Case1 の規則配置の場合であり、全体的な傾向 として実験値よりも過大であり、また空間格子が大きく なるにつれて浸水深は小さくなっている.これにより、 空間解像度を粗くした方が精度が良いように思われるが、 この水位の減少は移流項の風上差分スキームに起因する 数値粘性誤差が原因と考えられるため、物理的に正しい 結果とは必ずしもいいきれない.また、津波が建物間を 浸入する B 点以降において、実験に比べて計算での津波 の減衰は遅れており、最も背後の F 点ではかなり過大評 価になっている.よって、特に $\Delta x=1cm$, 2cm の粘性誤 差が小さくなるような高解像度での数値計算においては、 砕波減衰などのモデル化を考慮する必要が考えられる.

(2) Case2 について

一方,図6のCase2ではCase1のような傾向はなく, 不規則である.実験値と大きく異なるのは構造物1列目 付近(A,C)と再後列(F点)であり,前者は構造物に 衝突することによるスプラッシュの再現性の問題がある こと,また後者では計算で津波が到達していないことが 確認された.

5.おわりに

本研究では市街地の津波氾濫に関する水理実験から, 既往の津波数値モデルの再現精度の考察を行った.現段 階では浸水深のみによる比較であるが,今後,より定量 的な議論として,ビデオ画像等を利用した平面的な津波

図6 陸上浸水深の最大値の比較(Case2)

流況の比較や流速計による流速の比較などが必要である.

参考文献

- 小谷美佐, 今村文彦, 首藤伸夫: GISを利用した津波遡 上計算と被害推定法, 海岸工学論文集, 第45巻, pp.356-360, 1998.
- 2)藤間功司,佐藤紘志,鴫原良典,竹内幹雄,千葉智晴, 飯田勉,砂坂善雄,高梨和光:静岡市中島浄化センター の東海地震津波来襲時の被害予測について,土木学会地 震工学論文集,第29巻,pp.881-889,2007.
- 3) 後藤智明,小川由信:Leap-frog法を用いた津波の数値計 算手法,東北大学工学部土木工学科,1982.