有限被覆法による自由表面を有する流れ解析

中央大学大学院	学生員	中村	正人
計算力学研究センター	正会員	高瀬	慎介
中央大学	正会員	樫山	和男
東北大学	正会員	寺田	賢二郎

1. はじめに

河川・海岸構造物の計画,設計を行うにあたり,対象と なる自由表面を有する流れの把握や予測を行うことは重要 である.これらの検討を行う方法として,数値シミュレー ションは有効であり,近年数多くの手法が提案されている. それらは,移動メッシュを用いる手法と固定メッシュを用 いる手法に大別できる.移動メッシュを用いる手法は界面 を直接的に扱うため解析精度の点で有効であるが,跳水や 砕波を含むような複雑な解析を行う場合,解析メッシュに 破綻が生じ解析が困難となる場合が多く,ロバスト性に問題 がある.そこで本研究では,ロバスト性に優れる固定メッ シュを用いて解析を行う.しかし,固定メッシュを用いる 手法では、流体と固体の境界が移動する場合に境界の位置 を正確に考慮することが一般に困難である.この問題を解 決する手法の一つとして,有限被覆法(FCM)が挙げられ る.有限被覆法は,固定メッシュに対しても境界の位置を 正確に考慮し解析を行うことが可能である.

本研究では,流体と固体の界面を正確に考慮するために, 有限被覆法に基づく自由表面流れ解析手法の構築を行う. なお,気体,液体界面の決定方法には VOF 法を用い,流体 と固体の界面の決定方法には Level Set 関数を用いる.

2. 数值解析手法

(1) 支配方程式

Euler 記述された非圧縮性粘性流体の運動方程式及び,連続式はそれぞれ以下の(1),(2)で表される.

$$o\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} - \mathbf{f}\right) - \nabla \cdot \sigma\left(\mathbf{u}, p\right) = 0 \qquad (1)$$

$$\nabla \cdot \mathbf{u} = 0 \tag{2}$$

ここで, ρ は密度, u は流速ベクトル,f は物体力ベクトル を表している.また,応力テンソル σ は以下の式 (3) で表 される.

$$\sigma = -p\mathbf{I} + \mu \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^T\right]$$
(3)

ここで, p は圧力, μ は粘性係数である.また, Dirichelet 型, Neumann 型境界条件は, それぞれ次式で与えられる.

$$\mathbf{u} = \mathbf{g} \quad on \quad \Gamma_g \tag{4}$$

$$\mathbf{n} \cdot \boldsymbol{\sigma} = \mathbf{h} \quad on \quad \Gamma_h \tag{5}$$

ここで,g,hはそれぞれ流速,トラクションの既知量を示し,nは外向き法線ベクトルを示す.また,自由表面位置は,次式(6)の移流方程式を解くことにより決定される.

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0 \tag{6}$$

図 – 1 数学領域 Ω_e と物理領域 Ω_f

ここで, ϕ は VOF 関数を表し,気体であれば 0.0,液体であれば 1.0,直由表面上であれば 0.5 となる.

(2) 有限被覆法 (Finite Cover Method)の適用

有限被覆法は,図-1に示すように近似関数が定義され る数学領域 Ω_e と,支配方程式が満たされるべき物理領域 Ω_f (流体領域)を分離して定義するという点で,有限要素 法と大きく異なる.しかし,解析対象を要素で部分分割し, 各要素間の未知量を節点値により補間近似するという点に おいて有限要素法と一致するため,有限要素法を一般化し た手法とみなすことができる.以上の特性から,有限被覆 法では,有限要素法と同様の近似関数を用いながらも,要 素間に流体と固体の境界が存在することを許容し,その境 界位置を正確に考慮した流れ場を求めることが可能である. (3) 安定化有限被覆法

支配方程式 (1),(2) に対して,SUPG/PSPG 法に基づく 有限被覆法を適用し,自由表面付近の数値振動を回避する 衝撃補足項を付加することにより以下の弱形式が得られる. 積分領域が流体領域 \int_{Ω_f} であることが有限要素法と大きく 異なる点である.

$$\rho \int_{\Omega_{f}} \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} - \mathbf{f} \right) \cdot \mathbf{u}^{*} d\Omega$$

$$- \int_{\Omega_{f}} p \nabla \cdot \mathbf{u}^{*} d\Omega + \mu \int_{\Omega_{f}} \left(\nabla \mathbf{u} : \nabla \mathbf{u}^{*} + \nabla \mathbf{u} : (\nabla \mathbf{u}^{*})^{T} \right) d\Omega$$

$$+ \int_{\Omega_{f}} q^{*} \nabla \cdot \mathbf{u} d\Omega + \sum_{f=1}^{n_{el}} \int_{\Omega_{f}} \{ \tau_{supg} \mathbf{u} \cdot \nabla \mathbf{u}^{*} + \tau_{pspg} \frac{1}{\rho} \nabla q^{*} \}$$

$$\cdot \{ \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} - \mathbf{f} \right) - \nabla \cdot \sigma \} d\Omega$$

$$+ \sum_{f=1}^{n_{el}} \int_{\Omega_{f}} \tau_{cont} \nabla \cdot \mathbf{u}^{*} \rho \nabla \cdot \mathbf{u} d\Omega = 0$$
(7)

ここで, \mathbf{u}^* , q^* はそれぞれ運動方程式及び,連続式に対す る重み関数を表す.また, τ_{supg} , τ_{pspg} , τ_{cont} は安定化パラ メータを表す.一方,気体,液体の界面関数である移流方 程式に対しては, SUPG 法に基づく有限被覆法を適用する.

KeyWords: 有限被覆法,自由表面,移動境界

連絡先: 〒112-8551 東京都文京区春日 1-13-27 TEL 03-3817-1815 Email masato@civil.chuo-u.ac.jp

式 (7) に対して, P1/P1(流速・圧力一次)要素を用いて補 間を行い,時間方向の離散化には Crank-Nicolson 法を用い る.また,移流速度は,2次精度 Adams-Bashforth 法によ り陽的に近似する.連立一次方程式の解法には Element by Element に基づく GPBi-CG 法を用いる.

(4) ペナルティ法による境界条件処理

固定メッシュを用いる解法では,流体と固体の境界上に 自由度を持つ節点が存在するとは限らないので,節点値の 処理による境界条件処理を行うことができない.本研究で は,ペナルティ法による境界条件処理を行う.詳細につい ては,紙面の都合上割愛する.

- 3. 数值解析例
- (1) 静止流体の圧力確認問題

本手法の妥当性を示す問題として,静止流体の圧力確認 問題を行う.解析モデル,物性値,静水時の底面圧力の理論 式を図-2に示す.要素間に存在する破線は流体と固体の 境界を表し,ペナルティ法によりx方向流速を零としてい る.解析メッシュは,メッシュ幅0.25m(mesh1)と0.05m(mesh2)の二つのメッシュを用いる.微小時間増分量は $1.0 \times 10^{-4}s$ とし,境界条件は壁面全てを slip 条件とする. 10s後の流体と固体の境界上における圧力分布を図-3に 示す.なお,固体境界面上での圧力は節点値から線形補間 により求めた.図より,要素分割を細かくすることにより

図-5 時刻ごとの自由表面形状

圧力分布は理論値とほぼ一致することから本手法の妥当性 が確認できる.

(2) 流体中を強制運動する構造物周りの流れ問題

次に,流体中を強制運動する構造物周りの流れ問題 (図-4)を取り上げる.なお,微小時間増分量は0.001*s* とする.時刻ごとの自由表面形状を図-5に示す.構造物 の移動に伴う液体の越流現象をロバストに解析できている ことから,本手法の有効性が示される.

4. おわりに

本研究では,流体と固体の界面を正確に考慮するために, 有限被覆法に基づく自由表面流れ解析手法の構築を行い, 以下の結論を得た.

- 要素間に流体と固体の境界が存在する場合において
 も,理論値とほぼ同等の圧力分布が得られ,本手法の
 妥当性が確認できた.
- 流体中を固体が移動する問題においても、ロバストに解析が行え、本手法の有効性が確認できた。

参考文献

- 1) 車谷麻緒:3次元有限被覆法の開発とその性能評価:修士論文, 2004.
- 2) 桜庭雅明,弘崎聡,樫山和男:自由表面流れのための CIVA/VOF 法に基づく高精度界面捕捉法の構築:応用力学 論文集, Vol.6pp.215-222, 2003.