数値流体解析による二箱桁断面橋梁のフラッター特性に関する検討

中央大学 大学院 学生員 川﨑貴之 中央大学 正会員 平野廣和 中央大学 正会員 佐藤尚次

1. はじめに

明石海峡大橋を超える規模の超長大橋の検討にお いて、矩形断面を並列させ、両端にフェアリング、 あるいは開口部にセンターバリアを付加した二箱桁 断面が、経済性・耐風性に優れる桁断面だと提案さ れている。また、フラッター現象は、発散型現象で あり直接構造物の破壊につながることから、長大・ 超長大橋の耐風安定性断面の開発には、フラッター 性能の向上が必要不可欠な課題である。これまで、 橋梁断面の形状や付加物の決定には、風洞実験や数 値流体解析(CFD)による検討が行われており、一箱桁 橋の静的空気力係数や非定常空気力係数は、概ね実 験値と整合した CFD 結果が報告されている。しかし、 二箱桁断面においては、流れの干渉により複雑な流 れ場となることから、風洞実験結果と CFD が一致し ない場合が報告されている。このため、空力特性に 与える影響に関しては、十分な検討と現象の解明が 必要であると指摘されている¹⁾。

そこで、本研究では東京湾横断道路を想定した二 箱桁断面を対象とし、高欄や検査車レールなどを除 去したモデルで、3次元数値流体解析を行う。具体的 には、静的及び動的解析、フラッター解析を行い、 既往の実験値との定量的な精度比較や流れ場の可視 的検討を行う。そして、振動の発生原因の特定や耐 風性能の向上要因を明らかにするとともに、二箱桁 断面橋梁でのフェアリング・センターバリアなどの 付加物の有効性を示唆することを目的とする。

2. 解析手法・条件

流れ場の支配方程式は、非圧縮 Navier-Stokes 方程 式で表され、数値流体解析には、丸岡ら²⁾が提案して いる IBTD/FS 有限要素法を適用する。また、乱流モ デルには LES の Smagorinsky モデルを採用する。

図 -1 に本研究で用いた 3 種類の断面形状を示す。 ここで断面 は、B/D=4(B:桁幅,D:桁高)と開口 部幅 4D を組合せた二箱桁であり、本研究ではこの断 面を基本断面とする。断面 は、断面 にフェアリ ングを付加したものであり、断面 は断面 にセン ターバリアを付加したものである。ここでの断面

・断面 は、出野ら³⁾が行った風洞実験断面である。 本研究では、この風洞実験との比較のため、同一の 寸法を用いてモデル化を行っている。

表 -1 に解析条件を、図 -2 に解析領域を示す。境界 条件は、流入境界で無次元流速である一様流速 1.0、 流出境界は移流境界条件とする。また、側方で slip、 物体周りで no-slip 条件である。

- 3. 解析結果
- 3.1 静的空気力解析

図 3 に平均抗力係数*C*_d、平均揚力係数*C*_l、平均空 カモーメント係数*C*_mの静的空気力解析結果及び風洞 実験結果³⁾を併せて示す。

図 3(a)のC_dに着目すると、断面 、断面 は断面 に比べ、迎角を増加させても抗力が低く抑えられ ていることから、抗力低減効果のある断面であるこ とがわかる。さらに、図 3(b)と図 3(c)の C_lとC_mに 着目すると、両係数の勾配比較より、断面 が最も 耐風安定性に優れた断面形状であることが言え、フ ェアリングとセンターバリアを同時に付加すること で振動現象を発生させる空気力の低減効果が推察さ れる。また、解析結果と実験結果との整合性に関し ては、全解析範囲で良好な精度が得られている。

キーワード : 数値流体解析 二箱桁断面 フラッター解析 非定常空気力 連絡先 : 〒112-8551 東京都文京区春日 1-13-27 tel.03-3817-1816 fax.03-3817-1803 静的空気力解析の結果より、正確な流れ場の再現 ができたと考えられるので、1自由度たわみ・ねじれ 強制加振の非定常空気力動的解析を行う。なお強制 加振は、たわみ片振幅 η =0.1D、ねじれ片振幅 θ =1.0deg. とし、風洞実験値³と同様のものとした。

図 4 に非定常空気力係数のうち、フラッター性能 に影響を及ぼすと言われている係数¹⁾の結果を示す。 各係数を比較すると、無次元風速 U/(fB)=15.0 以上で それぞれの断面で特性が異なってきている。また、 実験値と解析結果を比較すると、断面 はよく整合 した結果が得られている。しかし、断面 は高風速 域において若干の乖離がみられる。これは、出野ら ³⁾の実験断面 は高欄や検査車を考慮したものであ っため、これらの付加物の影響だと考えられる。

次に図 5 に流れ場の状態として、非定常空気力係 数に変化が表れ始める U/(fB)=15.0 時の瞬間圧力分布 図と瞬間流線図を示す。図 5 の瞬間圧力分布図より、 断面 では上流断面の前縁より強い剥離剪断層がみ られ、桁断面へ強い変動圧力が発生していると考え られる。一方、断面 ・断面 ではフェアリング付 加により剥離剪断層が小さく抑えられている。また、 図 5 の瞬間流線図より、断面 ではセンターバリア を付加することで下流断面の再付着位置が、断面 ・断面 とは異なり側面へと変化している。この ことが、下流断面の変動圧力を低く抑え、非定常空 気力の低減に寄与していると考えられる。

3.3. フラッター解析

非定常空気力係数を用いてたわみ・ねじれ2自由 度フラッター解析をおこなう。その際の構造諸元を 表2に示す。フラッター解析の結果、たわみ減衰率 はどの形状においても常に正の値を示したため、ね じれフラッターのみが問題となる。

図 6にフラッター解析より算出された風速Uと対 数減衰率 δ の関係を示す。図 6 より、断面の解析 結果と風洞試験結果を比較すると、ほぼ同様の値と なっている。これは非定常空気力係数が精度良く求 められたためだと思われる。次に、表 3 に断面形状 の違いによるフラッター発現風速を示す。風洞実験 と解析の結果を比較すると、ほぼ同程度の値を示し、 断面では 2.43%の差、断面では 5.18%の差と良好 な精度でフラッター発現風速を予測できている。各 断面を比較すると、すべての断面がTheodorsen 理論 よりも高い結果となり、開口部を有する橋梁断面の 耐風性の高さがうかがえる。特に、断面のフラッ ター発現風速は断面と比較して約 1.3 倍程度大き く、フェアリングとセンターバリア同時付加の有効 性が確認できる。

4. おわりに

本研究では、検討対象として耐風安定化部材を有 する二箱桁断面を取り上げ、耐風安定化部材の有無 による耐フラッター性能の違いを検討した。今後の

表 3 フラッター発現風速の比較

\backslash	フラッター発現風速 Ucr		風速差
	Exp ()	CFD ()	{()-()}/()
断面		50.2 m/s	
断面	53.4 m/s	52.1 m/s	2.43%
断面	63.7 m/s	60.4 m/s	5.18%
Theodorsen	41.0 m/s		

課題として、変動圧力や非定常空気力の位相差を算 出し、より詳しい耐風性向上要因の解明を試みる。 また、高欄や検査車レールといった付加物の形状や、

設置位置の違いによる耐フラッター性能の違いも検 討していく。

参考文献

- 松本勝,白土博通他:鉛直板付き分離箱桁のフラッタ 特性,第18 回風工学シンポジウム pp.311-316,2004.
- 2) 丸岡晃,太田真二,平野廣和,川原陸人:同次補間を用いた陰的有限 要素法による非圧縮性粘性流れの解析,構造工学論文 集,Vol.43A,pp.383-394,1997.
- 出野麻由子,吉住文太他:付加物を有する二箱桁断面における耐風 安定性の検討,構造工学論文集,Vo.53A,2007.