線路直下における薬液注入の施工

東日本旅客鉄道㈱ 正会員 ○内藤 圭祐東日本旅客鉄道㈱ 正会員 仲山 貴司東日本旅客鉄道㈱ 正会員 齊木美由紀東鉄工業㈱ 萩原 辰裕

1. はじめに

HEP&JES 工法は線路横断方向に矩形状に挿入・配置した小断面の鋼製エレメントにコンクリートを充填して線路下横断構造物を構築する工法である。エレメントを挿入する際の切羽防護や鏡面の崩落防止を目的として薬液注入工を施工する場合があるが、軌道直下または線路近接範囲内での薬液注入の施工は、注入に伴い軌道変状を発生させる恐れがあり慎重に施工を行わなければならない。また、都市部においては列車運行の安全の確保のため、列車運行終了後から初列車までの夜間に薬液注入を行うことが多く、注入作業に多くの工期を必要とする。そこで、このような問題を解決するべく、多点注入工法による施工を実施したので、本稿では工法の事例について報告する。

2. 工事概要及び地盤概要

対象工事は、JR 中央線の線路直下に幅 $16.2m \times$ 高さ $7.5m \times$ 延長 12.9m の 1 層 3 径間のボックスカルバートを JES 工法により構築し、ボックスカルバートに取り付く前後のアプローチ部を RC ボックスカルバーと U 型擁壁により構築する。当該箇所の土層構成は R. L (レールレベル) から約 5.5m 付近までは盛土であり、函体側壁の中間部以深からは玉石混じりの砂礫層を主体とした構成となっている。また、地下水位は下床版の下端付近で推移している。

立坑部の掘削を行った際に側壁中間付近の砂礫層の土質試験を実施した結果、細粒分が 1.3%となっており、エレメント推進時に切羽が崩落し、大きな軌道変状が発生する可能性が考えられることから、地山強化を目的とした薬液注入工法を計画した (図-1).

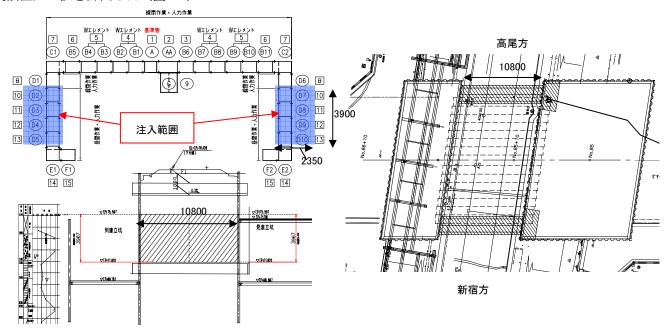


図-1 全体図

3. 薬液注入工法の計画

本現場での薬液注入工法の施工には、低吐出、低圧の浸透注入を行う多点注入工法を採用した.この工法はケーシングを建て込み後、束にした内径 6mm の注入パイプを削孔した孔に挿入し、32 基のポンプにて薬液を 32 箇所分同時注入する工法である.従来の二重管ダブルパッカー工法の注入速度は 8L/min 程度 ¹⁾であることに対して、この

工法は1 ノズル当たり最大5L/min の注入を行うため、地盤への影響が極めて小さいことから、軌道隆起の可能性も減少する。また、最大32 点を同時注入することで広範囲に渡る注入が可能となり、注入工期が短くなるという利点がある(図-2)。今回施工する現場においては、従来の二重管ダブルパッカー工法を4 セット使用した場合の条件と比較した場合、時間当たりの施工量と、注入作業の工期の面で多点注入工法による施工が優位であることを確認した(表-1)。

女 · 林岛區 · 6600 0 是 及 中国 · 6766 — 至 6 776 — 至		
工法名	二重管ダブルパッカー工法	多点注入工法
時間当たりの施工量(hr)	約 1, 900L/hr	約 5, 700L/hr
	※ボーリングマシン 4 セット分	※注入ポンプ 32 基/セット
	※1 本当たりの注入量は &L/min として算出	※1ノズル当たりの注入量は 3L/min として算出
注入工期	①1 次注入(CB):約8日間	多点注入ポンプ 32 基使用
※線路内稼動時間:85分	②2 次注入 : 約 16 日間	約7日間
	①+②≒24 日間	
計画注入量	60, 300L	

表-1 線路直下および近接範囲での施工量と注入工期

4. 注水試験の実施と施工管理

多点注入工法では、改良範囲の地盤に薬液を均質に浸透させることで効果を発揮する.そこで、施工時の注入において割裂注入とならないよう、事前に注水試験を実施し、浸透注入形態の注入速度(吐出量)とそれに対する注入圧の確認を行った. 注水試験は実際の地盤の状態(間隙率、土被り)で変化することから、代表的な注入箇所にて注水試験を実施した. 本現場では、最浅部、中間部、最深部の3箇所について注水試験を実施し、吐出量は0.5L/min~5.0L/min までの0.5L ずつ吐出量を変化させることとした(図-3). なお、注入圧力は、注水試験により測定した全圧力の結果から管内の抵抗分を差し引いたものとして算出を行った.

上記条件のもと実施した注水試験の結果うち、最深部での結果を図-4に示す。注水試験の結果、最浅部では吐出量が 4.5L/minで吐出量と圧力の比例関係が成立しなくなる傾向がみられ、中間部、最深部では 3.5L/min において同様な傾向が確認された。このことから、本現場における薬液の注入速度は 3.5L/min 以下を標準として施工することとした。

また,注入時に地山が隆起し,軌道変状が発生する恐れもあることから注入圧の管理(初期圧に対する注入圧力の上昇,下降)および軌道の自動計測を行い,軌道に対しては変位量に応じてポンプの吐出量の管理を行うこととした.

5. 施工結果

本現場において多点注入工法を施工した結果, 軌道に変状を与えることなく, 線路直下及び近接範囲に薬液注入を実施することができた. また, 施工後の注入状況の確認として, 側壁エレメント施工時の掘削土砂に pH 指示薬を散布した結果, 良好な注入状況を確認することができた.

6. おわりに

線路直下における薬液注入工法の施工事例を報告した. 本稿が 同様な現場の参考になれば幸いである.

1)(社)日本薬液注入協会偏:正しい薬液注入工法,H14.1

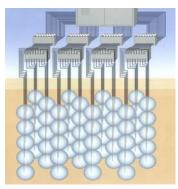


図-2 多点注入工法

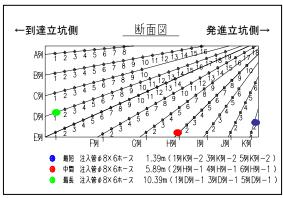


図-3 注水試験位置

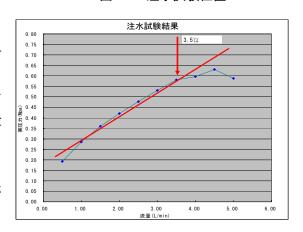


図-4 注水試験結果(最深部)