(2) 供試体の作製

早稻田大学	学生会員	〇上野	萌
早稲田大学		重森	大佑
早稲田大学大学院		堂園	菜緒子
早稻田大学	正会員	関	事

供試体としては円柱供試体 (φ 100mm×200mm) を作

本実験では全てのシリーズのフレッシュコンクリート

で水セメント比 W/C:55%, スランプ:8±2.5cm, 空気

量を6±1.5%に設定した.表-4に各シリーズの示方配合

製し, 圧縮強度試験および拡散係数試験に供した.

と測定されたスランプおよび空気量を示す.

1. はじめに

年間約8千万トン排出される建設廃棄物のうち40%強 を占めているのがコンクリート塊であり、高度経済成長 期に建設された既存の施設の撤去により、今後その量は 増加すると考えられる. さらに普通骨材の供給不足が懸 念される今日、コンクリート塊の再生骨材としての利用 は必要不可欠である. そのような状況を鑑み, これまで に3種類の再生骨材が JIS により規定されている $^{1) 2) 3)$. そのうち 2005 年に規定された再生骨材 H は普通骨材と 同等の品質を有しており、高品質再生骨材の実構造物へ の利用が期待される. 本研究では再生骨材 H を用いた再 生骨材コンクリート構造物の環境負荷を LCA の手法を 用いて評価した.評価を行うに当たり,普通骨材コンク リートと再生骨材コンクリートの耐用年数を想定するた めに、塩化物イオンの拡散係数を求める実験を実施し、 塩害劣化予測を行った.

2. 実験

(1) 実験概要

塩害を受ける RC 構造物の劣化予測には、コンクリー トの塩化物イオン拡散係数が必要である. 2007 年制定の コンクリート標準示方書「設計編]⁴⁾にはセメントの違 いによって, 拡散係数が W/C の関数として示されている が,使用骨材による拡散係数の違い等については記述さ れていない. そこで、本研究では普通ポルトランドセメ ントを選び、普通骨材および再生骨材の組み合わせによ る7種類の供試体を作製し、圧縮強度試験と電気泳動に よるコンクリート中の塩化物イオンの実効拡散係数試験 を行った.

表-1に使用骨材の記号と種類,表-2に各種骨材の特 性,表-3に供試体のシリーズ名と骨材の組合せを示す.

粗骨材 細骨材 シリーズ名 v R_1 R_2 \mathbf{r}_1 \mathbf{r}_2 Vv 0 0 R_1r_1 \bigcirc Ο R_1v \cap \bigcirc Vr_1 \cap \bigcirc R_2r_2 \bigcirc R_2v \bigcirc \bigcirc

 \bigcirc

表-1 骨材の記号と種類

記号	種類
V	普通粗骨材(砕石)
v	(岩質:硬質砂岩,産地:東京都青梅市)
T.	普通細骨材(混合砂:川砂25%,陸砂75%)
v	(産地:次城県土浦市川口新港(川砂),熊谷市大 字大麻生(陸砂))
R ₁	再生粗骨材(製造方法:加熱すりもみ法)
r ₁	再生細骨材(製造方法:加熱すりもみ法)
R ₂	再生粗骨材(製造方法:比重選別法)
r ₂	再生細骨材(製造方法:比重選別法)

表-2 各種骨材の物理的性質

	粗骨材		細骨材			
V	R ₁	R ₂	v	r ₁	r ₂	
2.64	2.57	2.54	2.56	2.32	2.46	
0.49	1.79	2.84	1.9	5.97	4.07	
60.2	60.8	_	66.4	63.2		
6.38	6.44	6.75	2.81	3.31	2.77	
	V 2.64 0.49 60.2 6.38	 粗骨材 V R₁ 2.64 2.57 0.49 1.79 60.2 60.8 6.38 6.44 	租骨材 V R1 R2 2.64 2.57 2.54 0.49 1.79 2.84 60.2 60.8 - 6.38 6.44 6.75	粗骨材 R2 v V R1 R2 v 2.64 2.57 2.54 2.56 0.49 1.79 2.84 1.9 60.2 60.8 - 66.4 6.38 6.44 6.75 2.81	粗骨材 細骨材 V R1 R2 v r1 2.64 2.57 2.54 2.56 2.32 0.49 1.79 2.84 1.9 5.97 60.2 60.8 - 66.4 63.2 6.38 6.44 6.75 2.81 3.31	

祖官材の 取 て 小 伝 : 15mm

 \cap

Vr₂

供試体のシリーズと骨材の組合せ 表−3

キーワード LCA, 環境負荷評価, 再生骨材, 拡散係数, 劣化予測 連絡先 〒169-8555 東京都新宿区大久保 3-4-1 51 号館 16F-09

	W/C	スランプ (cm)	空気量(%)		s/a	単位量 (kg/m ³)					
シリーズ名	(%)		電気泳動用	強度試験用	5/a (%)	水 W	セメント C	細骨材 S	粗骨材 G	AE減水剤	空気量調整剤
Vv		7	7.5	7.5	49.6	183	332	857	886	830	2987
R_1r_1		6	6.5	9.0	49.6	183	332	856	875	830	1493
R ₁ v		8	6.8	5.0	52.1	186	339	840	824	847	1016
Vr ₁	55	7	5.0	4.0	52.1	195	354	823	818	443	0
R_2r_2		7.9	4	.8	47.1	164	297	791	917	743	595
R ₂ v		7.5	5.	.0	47.3	164	298	826	913	745	596
Vr ₂		6.5	5.	.2	47.1	164	297	791	953	743	595

表-4 各シリーズの示方配合

(3) 実験方法

供試体は打設後材齢1日で脱型し,その後水中養生 を継続した.材齢28日の時点でJISA1108に準拠して 圧縮強度試験を実施した.

拡散係数の供試体は円柱供試体をダイヤモンドカッ ターで切断し,中央部(直径100mm,厚さ50mm)を 実験に供した.拡散係数の試験方法はJSCE-G571-2003 「電気泳動によるコンクリート中の塩化物イオンの実 効拡散係数試験方法(案)」⁵⁾により実施した.

3. 実験結果

(1) 圧縮強度試験

圧縮強度試験の結果を表-5 に示す. これによると骨材の相違による明確な差は認められなかった.

表-5 圧縮強度試験の結果(材齢28日)

シリーズ名	Vv	R_1r_1	R ₁ v	Vr ₁	R_2r_2	R ₂ v	Vr ₂
圧縮強度 (N/mm ²)	40.7	38.6	38.2	37.9	31.4	33.4	45.4

(2) 見掛けの拡散係数

電気泳動試験の結果から得られた実効拡散係数から, JSCE-G571-2003 に示される計算方法によって見掛けの 拡散係数を算出した.その結果を図-1 に示す.また, 見掛けの拡散係数と W/C の関係を図-2 に示す.本図で は文献 5) に示されている拡散係数も併せて示している.

図-2 見掛けの拡散係数と W/C の関係

図-2から、本実験で得られた結果は既往の研究の結 果とほぼ類似しており、これを塩害劣化予測に用いて も問題ないことがわかる.

4. 塩害による劣化予測

塩害環境下にある RC 桟橋を対象として, 各シリーズ において塩害劣化予測を行った.今回の実験で得られ た見掛けの拡散係数と表-6 に示す基本条件を用いて, 構造物の建替えまでの時間を計算した.なお,鉄筋の 限界腐食量は主鉄筋(曲げ)の断面減少率が10%とな った時点とした.劣化予測の結果を図-3 に示す.

図-3より,劣化予測の結果は最大でも3.5年程度の差しかなく骨材の相違による有意な差は見られなかった.

表-6 劣化予測に用いる基本条件

項目	数值
表面塩化物イオン量(kg/m ³)	13 ⁴⁾
かぶり (mm)	70
鉄筋径(mm)	16
鉄筋腐食限界塩化物イオン濃度(kg/m ³)	1.24)
ひび割れ発生時の腐食量 (mg/cm ²)	20 ⁶⁾
ひび割れ発生前の腐食速度(mg/cm²/年)	1.27)
ひび割れ発生後の腐食速度(mg/cm²/年)	12.4 ⁷⁾

5. LCA の評価

実験の結果から7つのシリーズ全てにおいて強度, 劣化予測に大きな相違は認められない.よってどのシ リーズの配合でも同等の品質のコンクリート構造物が できることを仮定して,LCA評価を行った.なお,再 生骨材での製造方法の相違による大きな差も見られな かったため,評価を行う対象は Vv および R₁r₁・R₁v・ Vr₁とした.

実験で実際に使用した配合をもとに RC 桟橋 (合計コ ンクリート使用量 184m³) を 4 つの工程を仮定し,その 際に排出される CO₂, SO_x, NO_xの量を文献 8)の原単 位を用いて,インベントリ分析 (LCCO₂, LCSO_x, LCNO_x) を行った.その際の 4 つの工程を図-4 から図-7 に,イ ンベントリ分析の結果を図-8 から図-10 に示す. また解体ステージでは, Vv:コンクリート塊を 100% 安定型処理, R₁r₁: コンクリート塊を 100%加熱すりも

安定型処理, R₁r₁: コンクリート塊を100%加熱すりも み法によりリサイクル, R₁v: コンクリート塊の70%を 加熱すりもみ法によりリサイクル・30%は安定型処理, Vr₁: コンクリート塊の65%を加熱すりもみ法によりリ サイクル・35%は安定型処理とする. これは立屋敷ら の研究⁹⁾でも述べられている通り,加熱すりもみ法で は原コンクリート塊の35%を粗骨材,30%を細骨材, 35%を副産微粉として再利用できるためである.

また各ステージの輸送距離は立屋敷らの研究¹⁰ によ り,全て10tトラックで行い,輸送距離もそれに従った. それぞれの輸送距離は図に示した通りである.なお, 今回の調査では天然骨材を利用する際の自然採掘にお ける環境負荷については考慮していない.

インベントリ分析の結果から、LCCO₂, LCSO_x, LCNO_x全てにおいて有意な差は見られなかった.

図-4 解体後再び天然骨材のみを使った工程(Vv)

図-5 解体後全ての骨材を再利用した工程(R₁r₁)

図-6 解体後粗骨材のみ再利用,細骨材は天然の ものを利用した工程(R₁v)

図-7 解体後細骨材のみ再利用, 粗骨材は天然の ものを利用した工程(Vr₁)

図-9 各シリーズの LCSO_x

図-10 各シリーズの LCNO_X

6. まとめ

今回使用した再生骨材の範囲では、以下のことがわかった.

- (1) 骨材の違いによる見掛けの拡散係数に有意な差は 認められなかった.
- (2) 本実験で求めた拡散係数を用いた塩害劣化予測の 結果に有意な差は認められなかった.
- (3) LCA 評価では、骨材の違いによる環境負荷(LCCO₂, LCSO_x, LCNO_x)に有意な差は認められなかった.

なお,本研究は,早稲田大学特定課題研究助成費 (2008B-143) によって実施したものである.

【参考文献】

- 財団法人 日本規格協会: JIS A 5021 コンクリー ト用再生骨材 H, 2005.3.
- 2) 財団法人 日本規格協会: JIS A 5022 再生骨材 M を用いたコンクリート, 2007.3.
- 3) 財団法人 日本規格協会: JIS A 5023 再生骨材 L を用いたコンクリート, 2006.3.
- 土木学会:2007 年制定 コンクリート標準示方書
 [設計編],2007.3.
- 5) 土木学会:コンクリート技術シリーズ55 コン クリートの塩化物イオン拡散係数試験方法の制定 と基準化が望まれる試験方法の動向,2003.9.
- 6) 関博,伊藤昇:鉄筋の腐食による軸方向ひびわれの発生機構について、セメント技術年報,36,p429, 1981.
- 7) 伊庭孝充,松島学,関博,川田秀夫:塩害を受ける RC 構造物のライフサイクルコスト算定手法に関する基礎的研究,土木学会論文集,vol.55, No.704,pp1~11, 2002.5.
- 2) 土木学会:コンクリートライブラリー125 コンク リート構造物の環境性能照査指針(試案), 2005.11.
- 9) 島 裕和, 立屋敷 久志, 橋本 光一, 西村 祐介: 加熱すりもみ法によるコンクリート塊からの高品 質骨材回収の LCA 評価, コンクリート工学年次論 文集, vol.23, No.2, pp67~72, 2001.
- 島 裕和, 立屋敷 久志, 吉田 好邦, 松橋 隆治: 加熱すりもみ法による高品質再生骨材のライフサ イクル分析, 電学論 C, vol.123, No.10, pp1680~ 1687, 2003.