日本大学大学院理工学研究	帘科 学生会員	○松澤	貴士
日本大学理工学部	正会員	高橋	正行
日本大学理工学部	フェロー会員	大津:	岩夫

<u>1.はじめに</u>

跳水は、その形成位置によって跳水始端の乱流境 界層が発達していない場合[Undeveloped inflow(以 下 UD と略す)(図-1(a))]と十分発達した場合[Fully developed inflow(FD と略す)(図-1(b))]とがある。従 来の研究では流入射流の違い(UD, FD)による跳水 内部の流速特性や空気混入特性の影響については不 明な点が多い。

ここでは、跳水始端での乱流境界層の発達状態 (UD, FD)が跳水内部の流速特性と空気混入特性に およぼす影響について実験的に検討した。

<u>2.実験</u>

長方形断面水平水路の自由跳水を対象とし、表-1 に示す条件で水路中央部の流速を二成分電磁流速計 (採取間隔 50ms、採取時間 100sec)とプラントル型 ピトー管(外径 3mm、内径 1.28mm)を用いて測定し た。表 1 中の F_1 は跳水始端のフルード数、 R_e はレ イノルズ数、V1は跳水始端断面の断面平均流速(V1= q/h1)、gは重力加速度、h1は跳水始端水深、gは単 率 C [C = 空気の体積/(空気の体積+水の体積)]を二 点電極型ボイド率計を用いて測定した。さらに、跳 水内部への空気混入状況の観察に、高速ビデオカメ ラを使用した(露光時間 1/2000s.撮影速度 1000fps)。 図-1の h_0 は縮流部の水深、 h_2 はBélanger equation る。なお、射流の乱流境界層の発達状態は Ohtsu and Yasuda(1994)の方法¹⁾を用いて判定している。 3.空気混入率

高速ビデオカメラを用いた跳水内部への空気混入 状況の観察によると、流入射流の水面と跳水のロー ラー部(表面渦)先端との交点である impingement point(図-1 参照)から空気が取り込まれている様 子とローラー部の水面の breaking によって空気が

乱流境界層の発達状態	F_1	R_{e}
Undeveloped inflow	7.2	62000
Fully developed inflow	7.2	62000
$F = \frac{V_1}{R} - \frac{q}{R}$		

キーワード 跳水, 乱流境界層, 空気混入特性, 流速特性

連絡先:〒101-8308 東京都千代田区神田駿河台 1-8-14, Tel. & Fax. 03-3259-0668

取り込まれている様子とがある。

impingement point 付近で取り込まれた気泡は跳 水中で移流、拡散し、空気混入率 Cの値は水路底面 からの鉛直高さyの増加に伴い大きくなり、空気混 入率の最大値 C_{max} を経て Cの値は減少している(図 -2 参照)。図-2 における $y \leq y_s$ の領域を Chanson²)は advective diffusion layer と呼んでいる。一方、 $y > y_s$ の領域では、ローラー部(表面渦)の水面の breaking により空気が取り込まれ、Cの値は増加し て1に近づく。

与えられた *F1*, *Re*,および乱流境界層の発達状態 のもとで実験値を整理すると、図-3 に示されるよう に、跳水始端断面近くの *C*の値が大きく、下流側に 向かって *C*の値が小さくなっている。

流入射流の乱流境界層の発達状態による空気混入 率分布の変化を知るため、与えられた x/h_2 のもとで 実験値を整理した一例を図-4 に示す。図に示される ように、FD の場合は UD の場合よりも advective diffusion layer 内での空気混入率 Cの値が大きい。 なお、跳水の上部($y > y_s$)では流入射流の乱流境界層 の発達状態による空気混入率 Cの値の違いはみられ ない。

流入射流の乱流境界層の発達状態による advective diffusion layer 内の空気混入率の最大値 *Cmax の*変化を図・5 に示す。図・5 に示されるように *x/h2*の値が大きくなると *Cmax*の値は小さくなる。ま た、与えられた *x/h2*に対して、FD の場合は UD の 場合よりも *Cmax*の値が大きい。これは、FD の場合 は流入射流の乱流境界層が水面まで到達しているた め、UD の場合と比べて水面付近の乱れが大きくな り、impingement point 近くで取り込まれる空気の 量が多くなったためと考えられる。写真・1 に示され るように、高速ビデオカメラを用いた観察によると、 FD の場合は水面近くの乱れの存在によって跳水内 部に多くの空気が取り込まれている様子を見ること ができる。

Ervine and Falvey³⁾は pool に突入する water jet の乱れ強さが大きくなると pool に混入する空気の 量が大きくなることを示している。このことは、流 入射流の乱れが跳水内部の空気混入率に影響をおよ ぼすことと類似な現象であると考えられる。

図-5 Cmaxの変化

(a) UD の場合

(b) FD の場合

図-6 時間平均の流速ベクトル

4.跳水内部の流速

与えられたフルード数 Fr=7.2 およびレイノルズ数 Re=6.2×10⁴に対して、乱流境界層の発達状態を変化させた場合(FD,UD)の跳水内部の流速ベクトルと空気混入率分布を図-6 に示す。ここに、x は跳水始端から流

下方向への距離、*u*は*x*方向の流速、*v*は*y*方向の 流速である。図-6に示されるように、UDの場合は 跳水内部のJet が底面近くに位置するのに対し、FD の場合はUDの場合よりもJet が短区間で拡がりな がら上昇している。

図-7に示すように $u=u_m(u_m: 最大流速)$ となる yを $y_1, u=u_m/2$ となる yを Yと定義する。 y_1 と Yの 流下方向の変化を図-8,9 に示す。図に示されるよう に、FD の場合は UD の場合よりも y_1 、 Y共に大き い。さらに、図-6 に示されるように FD の場合は UD の場合よりも advective diffusion layer($y \leq y_3$) 内での空気混入率 Cの値が大きく、気泡の浮力効果 も大きい。このため、FD の場合は UD の場合より も流れが上向きとなり、短区間($x/h_2 \leq 5.5$)で流れが 上昇した要因となっているものと考えられる。 まとめ

跳水始端での乱流境界層の発達状態(UD,FD)が跳 水内部の流速特性と空気混入特性におよぼす影響に ついて実験的に検討し以下のことを明らかにした。

1. FD の場合は UD の場合よりも advective diffusion layer 内での空気混入率 Cの値が大きい。これは、跳水始端から取り込まれる空気の混入量が 流入射流の水面付近の乱れの影響を受けたためと考 えられる。

2. UD の場合と比べると、FD の場合は Jet が拡が りながら上昇している。これは気泡の浮力効果の影 響を受けたためと考えられる。

参考文献

1) Ohtsu, I. and Yasuda, Y., Characteristics of supercritical flow below sluice gate, Journal of Hydraulic Engineering, ASCE, Vol.120, No.3, pp.332-346, 1994.

2) Chanson, H. and Gualtieri, C: Similitude and scale effects of air entrainment in hydraulic jumps, Journal of Hydraulic Research, IAHR, Vol.46, No.1, pp.35-44, 2008.

3) Ervine, D. A., and Falvey, H. T.: Behaviour of turbulent water jets in the atmosphere and in plunge pools, /Proc. Instn. Civ. Engrg./, Part 2, Vol. 83, pp.295-314, 1987.

