非接触3次元レーザー変位計を用いたすみ肉溶接形状の特徴量評価

宇都宮大学 学生員 〇村上一馬, フェロー 中島章典, 正会員 鈴木康夫

1. はじめに

研究背景および目的

鋼板の溶接箇所は部材間の境界であり,製品として の品質を大きく左右する箇所であるため,鋼製品の 評価においてその特徴量の検査は極めて重要な項目 となっている.現在,すみ肉溶接部を有する鋼製品 における溶接箇所の形状,位置,欠陥の有無などは, 外観検査により検査員の目視によって評価する手法 が広く用いられている.外観検査では,検査員が溶 接ゲージと呼ばれる測定器具を用いてのど厚,脚長, アンダーカットなどの溶接形状を測定する.検査手 順が簡便で,かつ短時間,低コストで製品の溶接部 評価を行える反面,検査員が製品を正確に評価でき るレベルに達するのに相応の経験を要する.また検 査員の知識,経験など,個々人の能力差に起因する検 査精度のばらつきなどが課題となっている.

こうした背景から,溶接部位を伴う鋼製品の最重 要箇所である鋼材溶接部を対象とした簡易で人為誤 差が無く,かつ検査員の能力に依存しない定量的な 検査手法の開発が望まれている.

本研究では、非接触3次元レーザー変位計を用い て、すみ肉溶接部を有する試験体の形状測定を行な い、得られたデータから溶接箇所の形状を立体的に 推定し、脚長、のど厚、アンダーカットなど特徴量評 価を行う手法の確立を試みる.

(2) 非接触 3 次元レーザー変位計

本研究で使用する非接触3次元レーザー変位計は, レーザー射出窓から対象物にレーザー光を照射し、そ の反射波を受光レンズで受光することにより対象物の 位置をデジタル3次元座標をもつ点群データとして認 識し、そのデータを様々な形式で処理することができ る.対象物の大きさや対象物までの距離に応じて3タ イプのレンズ (ワイドレンズ, ミドルレンズ, テレレ ンズ)を使い分けることができ、測定距離は 500mm ~2500mm 程度である. レーザー変位計の確度,精 度はそれぞれ ± 0.05 mm, ± 0.008 mm であり、この 測定精度は測定距離と対象物のサイズの関係により 変動し、レーザー変位計と対象物の距離が近いほど 精度は高まる. 逆に測定距離が長くなると対象物表 面の凹凸による影の影響は軽減される. 一般的な2次 元レーザー変位計よりも分解能としては劣るが、溶 接部における特徴量の基準値程度のオーダーを考慮 した場合、検査精度を十分に満足する仕様と考えら れる. 測定後に得られた3次元座標データは、専用 のポリゴン編集ソフトを通して種々の形式で出力さ れる.

本研究では、レーザー変位計と試験体の距離は約 500mm~800mm、ミドルレンズを使用し、照射レー ザーの強度は強度範囲 1~225 中、強度 11 で測定を 行った. 今回用いたすみ肉溶接部を有する試験体を 写真-1 に、計測された 3 次元座標データを元に試験 体形状を再現したものを図-1 に示す.

写真-1 試験体外観

図−1 3次元座標データで表した試験体

2. 溶接部特徴量の算出

(1) 概要

溶接部特徴量の算出に当たっては、特許出願された 既住の方法¹⁾を参考とした.試験体のすみ肉溶接の方 向に直行する1断面を対象とすれば、溶接部特徴量 算出手順はこの方法により考案されている.

本研究では、この方法を試験体長手方向に拡張する ことで試験体測定部のすみ肉溶接の特徴量を連続的 に算出する.まず、図-1に示すような試験体の3次 元座標データを行データと列データとして扱えるよ うにした.この処理を行うことで、試験体のすみ肉 溶接の方向に直行する1断面の3次元座標データを1 つの列データとして考えることができる.その後、1 つの列データに対して溶接部特徴量を算出するアル ゴリズムを作成し、これをすべての列データに適用 することで試験体測定部全域の特徴量を求めた.

ここに, 図-1の *x* 座標は試験体長手方向位置, *y* 座標は試験体のある基準面からの高さ, *z* 座標はレー ザー変位計から試験体までの距離を示す.

(2) 母材と溶接部の境界

図-2のようにy = z断面で1つの列データを考え, 上下の母材直線部分100点程度に対して近似直線 f_1 , f_2 を求める.次に、図-2のZone1を拡大した図-3の ように f_1 , f_2 から各測定点の垂直距離を求め、0.2mm を超える最初の点までを新たに直線近似する.このと き、上下の近似直線をそれぞれ f_{11} , f_{22} とする.そ の後図-4の赤で囲んだ範囲のように、 f_{11} , f_{22} から 各測定点の垂直距離を再度求め、4点以上連続して

0.2mm を越える最初の点を仮の脚長点とする. この とき、上下の仮の脚長点をそれぞれ P_1 , P_2 とする. 図-5のように、 P_1 , P_2 を結んだ直線と f_{11} , f_{22} の 交点を脚長点 P_a , P_b とする.

(3) 脚長の算出

脚長は、すみ肉継手のルート(母材交点)からすみ 肉溶接の止端部(母材の面と溶接ビードの表面とが交 わる点)までの距離である.本研究では、すみ肉継手 の根元部分は近似直線 f_{11} , f_{22} の交点 Pとして求め、 その交点 Pから上記の方法で求めた脚長点までの距 離を脚長として算出した.上下の脚長をそれぞれ ℓ_a 、 ℓ_b とする.

(4) のど厚の算出

のど厚には理論のど厚,実際のど厚の2種類があ る.理論のど厚は溶接の設計計算上求める必要値で, すみ肉溶接の横断面内でこれに内接する二等辺三角 形を考え,若干の溶け込みを無視して継手のルート から二等辺三角形の斜辺までの最短距離を示す.こ れに対し,実際のど厚は,実際の溶接された箇所の のど厚のことであり,溶け込みを考えた溶接のルー ト(溶接金属の境界と母材表面の交点)からすみ肉溶 接の表面までの最短距離を指す.

本研究での理論のど厚は、図-5のように、交点 Pから脚長点 P_a 、 P_b を結んだ直線へ下ろした垂線の長さ tとして算出した.実際のど厚は交点 Pと溶接部の点群の距離を算出し、その最小値 sを実際のど厚とした.

(5) 特徴量の算出結果

ここまでは、1つの列データの特徴量算出に適用したものである.測定範囲全域に適用するために、列データを試験体長手方向に増やしながら上記の計算を行った.その結果を図-6に示す.縦軸には測定範囲全域にわたる脚長、のど厚をとった.試験体のもつ3次元座標のうち、x座標は試験体長手方向位置を示すので、横軸はx座標をとった.脚長 ℓ_a, ℓ_b は、測定

図-6 測定点全域の脚長およびのど厚

表-1	脚長,	のど厚の比較

	Average(mm)	Max(mm)	Min(mm)
ℓ_a	9.628	10.365	8.987
ℓ_b	8.302	9.01	7.858
t	6.358	6.756	6.106

範囲全域に渡り ℓ_a が ℓ_b を超えており, t が脚長を上回るような特異な点は見られなかった. 測定範囲全域の ℓ_a , ℓ_b , t の平均値,最大値,最小値を**表**-1 に示す. 今回求めたこれらの値は,試験体の測定範囲を明確にしていなかったため,溶接部の参照値と比較をすることができていない.

3. おわりに

本研究では、非接触3次元レーザー変位計を用いて すみ肉溶接を有する試験体を測定し、そのデジタル3 次元座標データから脚長、のど厚など溶接部の特徴 量を算出した. 今後は実際のど厚の算出や, この結 果の妥当性を確認するために試験体溶接部の参照値 を取得し、計算結果と比較、検討を行う必要がある. また、今回使用したレーザー変位計は、対象物の位置 をレーザー光の反射を利用して求めるという測定原 理のため、非常に深いアンダーカットや高すぎる余 盛をもつ試験体では、レーザーが届かず3次元座標 が読み取れない部分が生じることがある.また試験 体の表面輝度が高いと、レーザーが乱反射して正確 に3次元座標が読み取れない場合もある^{2),3)}ため、こ のレーザー変位計により測定できる試験体には、試 験体サイズの他に表面性状の制限も存在することが わかった.

参考文献

- 特許 2008-148183, 溶接部の検査方法および検査シス テム, 宇都宮大学, トピー工業株式会社.
- 2) 隅田雅昭:非接触3次元モデル測定の高精度化に関する研究,宮崎県工業技術センター,宮崎県食品開発センター研究報告,pp. 87-90, No.46, 2001.
- 岩本竜一,森田春美,仮屋一昭:溶接外観検査装置の 試作研究,鹿児島県工業技術センター研究報告 No.15, 2001.