自己充填コンクリートの多層流動障害通過時における圧力損失現象に関する研究

宇都宮大学大学院	正会員	○渡邊	暢
宇都宮大学	正会員	藤原	浩已
宇都宮大学	正会員	丸岡	正知
宇都宮大学	正会員	小倉	恵里香

1. はじめに

自己充填性を有する高流動コンクリート(以下:自己 充填コンクリート)は締固めなしに自己充填が可能な コンクリートである。しかし、実際には型枠内の流動 途中で圧力損失により充填不良が生じる可能性がある ことが指摘されており、圧力損失メカニズムの解明が 必要とされている。

これまで、流動障害となる鉄筋が一段の単層配筋構 造について、モデル自己充填コンクリートの可視化実 験¹⁾を行い、混相流体力学の概念を用いた圧力損失メ カニズムの解析²⁾を進め、理論的な検討を行ってきた。 一方、実構造物では多層配筋された部材が多くみられ る。本研究では、多層配筋通過時の自己充填コンクリ ートの挙動把握をし、多層配筋構造における圧力損失 現象を単層配筋構造時と比較し、推定式²⁾の応用が可 能かを解明するための現象把握を目的として、モデル 自己充填コンクリートの可視化実験を行った。

2. 可視化技術を用いた一定圧力流動試験

2.1 実験概要

本章では、可視化可能なモデル自己充填コンクリー ト(以下、モデルコンクリート)を用い、多層配筋状態 での間隙通過試験を行った。実験では、流動圧力をほ ぼ一定とすることにより実施工に近い状態を模したも のである。

また,本実験は多層配筋構造の第一段階とし流動障 害を二段とした二層配筋構造における試験を行った。

2.2 間隙通過試験

(1) 使用材料

本研究では、自己充填コンクリートをモルタルと粗 骨材の固液二相系流体と捉えた。コンクリート中の粗 骨材を可視化するため、モデルモルタルとして、水道 水に増粘剤(アルキルアリルスルフォン酸塩,密度: 1.08g/cm³)を添加したものを用い、粗骨材はカラーリ ングを施した人工軽量骨材(最大寸法:15mm, 絶乾密 度:1.34g/cm³)を用いた。

(2) 試験方法

一定流動圧力下とするため、図-1に示すモデル型 枠のA槽にモデルコンクリートを投入し続けることに より、一定の水頭高さを保持した。B層に達したモデ ルコンクリートは端部の切欠部より流れ出る形とした。 10分間投入し続け、排出された質量を測定し、流量を 換算した。その際、図-2に示す水平流動部の様子を ビデオカメラで撮影し、各種解析に用いた。

(3) 試験条件

配合条件は、モデルコンクリートの粗骨材体積濃度 Xv が 26,30 および 34(%)の3 水準,増粘剤添加率を 20(%)とした。

また,モデル型枠条件として、図-2に示す間隙幅 Lが21,24,26,30(mm)の4水準,流動障害層の間隔G は45,60および75(mm)の3水準とした。

(4) コンクリートの流動挙動

表-1に間隙部における閉塞状況および間隙通過流

キーワード:自己充填コンクリート,多層配筋構造,圧力損失,可視化モデル,一定圧力 連絡先 〒321-8585 栃木県宇都宮市陽東 7-1-2 宇都宮大学工学部建設学科材料研究室 12028-689-6211 量 (kg/min)を示す。◎はすべての間隙が閉塞したもの (全閉塞)を示し、●は完全に閉塞し、モルタルが型枠 内に充填できなかったものを示す。

これまでの研究より,粗骨材が鉄筋間隙部分を通過 する際,粗骨材の流れに停滞が生じていることが認め られている。これより,流動障害上流側で粗骨材体積 濃度 Xv が増大する現象が確認されている(以下この 現象を濃縮と称す)。また,濃縮が大きいと間隙部で粗 骨材のアーチングが起こり閉塞する現象(以下,閉塞 現象と記す)が生じる。この現象は,一層目および二 層目共に生じることが認められた。

流動障害間隔Gは大きい方が閉塞しやすい傾向がみ られた。これはAREA2の範囲の違いが、濃縮の範囲 の違いとなり、この範囲が広いと多くの粗骨材が堆積 するため、閉塞しやすくなると考えられる。

間隙幅 L が広いほど、Xv が小さいほど、流動障害 間隔Gが大きいほど間隙通過流量が大きくなることわ かった。また、流動障害間隔 G による流量の変化は、 Xv が小さいほど大きな変化が認められた。

ー定圧力で流動を続けていると徐々に濃縮が生じる 現象が認められた。

v .	G			闭差坑豕		モルタル	加里
(%)	(mm)	(%)	(mm)	一層	二層	先流れ	(kg/min)
		26	30				0.11
			26				0.13
			24				0.04
			21	0	0		0.04
	45	30	30				0.03
			26				0.05
			24	0			0.01
			21	0	0		0.01
		34	30				0.04
			26				0.04
			24	0			0.03
			21	O	0	0	0.00
		26	30				0.17
			26				0.15
20 6			24	0			0.07
			21	0	0	0	0.01
			30				0.13
	60	30	26	0			0.14
	00		24	0			0.02
			21	0	0		0.06
		34	30				0.12
_			26	0	0	0	0.14
			24	0	0	0	0.07
			21	0	0	0	0.03
	26 75 30 34	26	30				0.38
			26	0	0		0.25
			24	0	0	0	0.13
			21	0	0	0	0.08
		30	30	0	0		0.22
			26	0	0	0	0.23
			24	0	0	0	0.10
			21		0	×	0.00
			30				0.11
		34	26	0	0	0	0.12
			24		0	×	0.00
			21			×	0.00

表-1 間隙部における閉塞状況および流量

※〇を部分閉塞, ◎を全閉塞, ●を間全閉塞とする。

3. 可視化実験結果の数値的解析

3.1 目的

流動挙動を目視のみでなく,数値的に捉えるため, 撮影した映像を画像処理し,解析を行った。本研究で は粗骨材平均速度および粗骨材体積濃度 Xv の変化に ついて解析を行った。

3.2 解析方法

(1) 粗骨材平均速度の算出

図-2に示す各 AREA を検査領域をとし、短冊状に 区間分割する。分割幅は AREA1, AREA3 をそれぞれ 5 分割し, AREA2 は粗骨材最大寸法の 15mm とした。 間隙通過前後領域における各区間の粗骨材の流動速度 を流動解析ソフト PIV (Particle Image Velocimetry)を 用いて測定した。測定範囲は撮影した映像の 1~10 分 間であり, 1 秒毎の流動速度を測定し, 平均した。ま た、時系列に伴う変化を追った。時系列における測定 対象時間はそれぞれ流動開始から 1.5、3、4.5、6、7.5、 9 分後とした。また、この解析値は各時間前後 10 秒間 の平均値とした。

(2) 時系列に伴う粗骨材体積濃度の変化の算定

粗骨材体積濃度は、間隙を通過する際、停滞・濃縮 現象を生じるため時間経過に伴い変化する。間隙通過 後粗骨材体積濃度 Xv'n(%)は,間隙通過試験中の図-2に示す各 AREA における Xv を示すものであり,濃 縮の程度が大きいほど大きくなるものと考えられる。 まず, AREA1, AREA2 および AREA3 における静止画 像に二値化処理を行い,白色を粗骨材,黒色をモルタ ル部分とみなし,領域毎に白色が占める粗骨材面積割 合を画像解析ソフトにて測定した。

AREA1, AREA2 および AREA3 における粗骨材面積 割合をそれぞれ S₁, S₂および S₃(%)とする。

これから,間隙通過後の粗骨材体積濃度 Xv'は式(1) で表される。

$$Xv'_{n} = \frac{S_{n}(A_{1} + A_{2} + A_{3})}{A_{1}S_{1} + A_{2}S_{2} + A_{3}S_{3}} Xv$$
(1)

ここにn=1, 2, 3とする。

Xv'_n:間隙通過後粗骨材体積濃度(%)

Xv :配合時の粗骨材体積濃度(%)

A₁, A₂, A₃: AREA1, 2, 3の検査領域面積(%)

S₁, S₂, S₃: AREA1, 2, 3の粗骨材面積割合(%) また、対象測定時間は(1)の解析と同一とした。 3.3

考察

t=3min 以後の粗骨材平均流速を流動障害間隔Gご とに比較すると、Gは広い方が、流速が速い傾向が認 められた。また, t=1.5min において G=75mm にて低 い値を示している。しかし、図-3より間隙通過流量 が多いため、本条件の流速は速いと容易に推測できる ことから、本条件においては、t=1.5min 以前にて最 大流速をとると考えられる。このため、本解析結果は、 最大流速を示すことができなかったと考えられる。ま た,図-4に示すL=30,26mmの条件も同様に流速のピ ークは t =1.5min 以前と考えられる。

幅 L=30,26,24mm とした。

同一間隙幅Lで比較した場合、Gが狭い方が、流速 が安定するまでの時間が短い傾向が認められた。また, 同一流動障害間隔Gで比較した場合,Lが大きいほう が、流速が安定するまでの時間が短い傾向が認められ た。これらでは間隙流量が少なく、閉塞現象が生じて いない配合ほど定常流となるまでの時間が短いと考え られる。

モデルコンクリートが間隙を通過する際、粗骨材の 流速が、間隙直前で増加する場合と間隙直後で増加す る場合が認められた。

(2) 時系列に伴う粗骨材体積濃度の変化

各 AREA の粗骨材体積濃度を、時系列 t (min)を追っ

て,解析した。粗骨材の平均流速と同様に,流動試験 の傾向を強く認められた Xv=30%における結果を示す。 粗骨材体積濃度の変化(Xv=30%,G=45mm)を図-6 に、粗骨材体積濃度の変化(Xv=30%,G=60mm)を図 -7に、粗骨材体積濃度の変化(Xv=30%,G=75mm) を図-8にそれぞれ示す。また、それぞれ左から間隙 幅 L=30,26,24mm とした。

流動障害層の間隔 G は、狭いと濃縮が小さく、広い と濃縮が大きいという傾向が認められた。G=45mmに おいて、Lが大きい条件では、Xvの変化が小さく、良 好な流動状態を示した。しかし、条件が厳しくなるほ ど、t=6min 以降で濃縮が大きくなった。また、G= 75mm では、全体的に濃縮が大きく、早い時点で濃縮 が起きていた。

また、濃縮の状況として、大きく二つ挙げられる。 一つは、濃縮を生じていなかったものが時間経過とと もに徐々に濃縮を生じる現象である。この現象を遅れ 濃縮と呼ぶこととした。二つ目は流動開始直後から大 きな濃縮を生じるものが挙げられる。この濃縮現象は, G が広いときに多くみられるため、流動速度が速いと 生じ易いと考えられる。

(3)両解析の相関

濃縮の小さい配合は、流速が安定するまでの時間が

短いという傾向が認めら れた。この傾向は流量が少 ないほど多く認められた。 つまり,流動速度が遅くな り易い配合が,閉塞現象を 生じにくいと考えられる。

濃縮の大きい配合は、モ ルタルの先流れ現象を生 じ、流速は安定しにくい傾 向が認められた。この傾向 は、流量が多いほど多く見 られた。つまり、流動速度 が速くなり易い配合だと、 濃縮および閉塞現象が生 じ易いと考えられる。

また,静的解析で濃縮を 示した条件では,動的解析 において間隙通過後の流 速の増加が認められ,モル

タルの先流れを生じることが認められた。これより, 静的解析と動的解析の相関が認められた。

4. まとめ

一定流動圧下において,自己充填性を有する高流動 コンクリートが二層配筋構造の流動障害を通過する際, 流動挙動,粗骨材の流動速度および粗骨材の分布状況

(各AREAにおける粗骨材体積濃度)の把握を試みた。 その結果,次のことが明らかになった。

実施工時に大きな問題となる充填不良の主要因とし て,圧力損失が挙げられる。圧力損失が増大する原因 とされる濃縮および閉塞現象は流量が多いほど,つま りコンクリートの流動速度が速いほど生じ易いことが 明らかになった。

また,流動障害層の間隔Gが広くなるほど,流速は 増加することより,濃縮および閉塞現象が生じ易くな ると考えられる。濃縮および閉塞現象発生において, 間隙幅Lの影響より流動障害層の間隔Gの影響が大き いことが認められた。

濃縮の発生状況として、大きく二つに分類された。 一つは、流動開始初期に濃縮を生じていなかったもの が流動時間を長くしていくと徐々に濃縮が生じてしま う現象である。この現象を遅れ濃縮と呼ぶとした。二 つ目は流動開始直後から大きな濃縮を生じる場合であ る。

これらの結果より,濃縮および閉塞現象が生じにく い配合の傾向認められた。今後の検討として,この濃 縮の生じにくい配合の試験結果を用いて,各 AREA の 粗骨材体積濃度 Xv の推定式を求める。更に単層配筋 構造において,解明を進めていた推定式を用いて,多 層配筋構造における圧力損失値推定式構築を図る。

謝辞

本研究で使用した増粘剤を提供していただいた花王 (株)関係者各位に御礼申し上げます。

本研究は文部科学省科学研究費補助金基盤研究 (C)18560447 により行われたことを付記し, 謝意を表 します。

参考文献

- 谷川恭雄ほか:超流動コンクリートにおける粗骨 材連行性に関するレオロジー的考察,超流動コン クリートに関するシンポジウム論文報告集, pp.79-84, 1993
- 渡辺有寿ほか:高流動コンクリートの鉄筋間隙通 過時における圧力損失メカニズムに関する研究, コンクリート工学年次論文集, Vol.28, No.1, pp1139-1144, 2006