鉄筋腐食した RC 構造物の付着性能に及ぼすかぶり厚の影響

中央大学 理工学部土木工学科 学生会員 〇伊是名 亮太 中央大学大学院 理工学研究科土木工学専攻 正会員 村上 祐貴

東電設計(株)土木本部 地盤構造部設計高度化グループ課長 正会員 鈴木 修一

中央大学 理工学部土木工学科教授 工博 正会員 大下 英吉

1. はじめに

鉄筋腐食を生じた RC 構造物の付着応力性能は,節の 欠損や腐食ひび割れの発生により低下する。既往の研究 において,腐食ひび割れ,特に側面方向の腐食ひび割れ 性状は付着応力に大きな影響を及ぼすことが明らかとさ れた¹⁾。そこで本研究では,鉄筋間隔の異なる鉄筋腐食 を有する RC 部材に対して引抜き試験を実施し,かぶり 厚(鉄筋間隔)が腐食鉄筋とコンクリートの付着応力性状 に及ぼす影響を評価した。

2. 実験概要

2.1 試験体

試験体の形状寸法および配筋状況を図-1 に示す。試験 体タイプは2種類であり、それぞれ240×200×960mm(以下 Aシリーズとする²⁰)および210×260×875mm(以下 Bシリ ーズとする)の RC 部材である。同図(a)に示す Aシリー ズ試験体は引張主鉄筋として、D16 異形鉄筋(SD295A) を 60mm 間隔で3本配筋し、同図(b)に示す Bシリーズ 試験体は90mm 間隔で2本配筋した。試験体配合は表-1 に示す通りであり、練り混ぜ水には5%NaCl溶液を使 用した。試験体は28 日湿布養生後、電食試験を行い、材 齢 36 日の時点で引抜き試験を実施した。

2.2 実験パラメータ

実験パラメータは、表-2に示すように、引張主鉄筋の 鉄筋間隔および鉄筋腐食率である。鉄筋間隔はAシリー ズが 60mm, Bシリーズは 40mm であり、目標腐食率は、 両シリーズともに0%、10%および 20%の3 水準である。 なお試験体名称のアルファベットは試験体シリーズを示 しており、末尾の数値は目標腐食率を表している。

2.3 電食試験方法

鉄筋の腐食方法には電食試験法を採用した。5%NaCl 水溶液を満たした水槽内に試験体の当該領域を侵漬させ, 鉄筋を陽極側,銅版を陰極側に接続した後,直流定電流 20A を通電した。

キーワード:鉄筋腐食,かぶり厚,付着応力

住所:東京都文京区春日1-13-27,電話:03-3817-1892, FAX:03-3817-1803

Gmax	W/C	スランプ	空気量	単位量(kg/m ³)				
(mm)	(%)	(cm)	(%)	7k	セメント	細骨材	知骨材	混和剤
20	60	10	5	168	280	826	996	2.80

表-2 実験パラメータ

		r	
シリーズ	試験体名	目標廣食率 (%)	コンクリート強度 (N/mm ²)
	A-0	0	26.2
Α	A-10	10	27.8
	A-20	20	25.8
	B-0	0	28.8
В	B-10	10	24.9
_	B-20	20	25.6

夫-	-3	鉄筋の腐食率	
1X	U	<u>奶加~~~~</u>	

	実測腐食率%)					
試験体名	L鉄筋	M鉄筋	R鉄筋	平均		
A-10	125	9.1	10.6	10.7		
A-20	20.2	13.5	14.0	15.9		
B-10	6.3	_	6.6	6.5		
B-20	12.7		119	13.4		

2.4 測定項目

引抜き試験は片引き試験とし、載荷速度は9.8kN/min である。引抜く鉄筋は両シリーズともにL鉄筋とし(図 -1 参照),自由端すべりは、変位計(1/100mm)を引抜き 鉄筋の上下2箇所に設置して計測した。

鉄筋ひずみの測定方法であるが、腐食に伴うひずみゲ ージの破損を極力抑制するため、その貼り付け位置は鉄 筋内部とした。具体的な手法は、鉄筋を軸方向に切断し、 その断面に 2×4mm の溝を掘り、ひずみゲージ(検長 2mm)を貼り付けた後、2 対の切断された鉄筋をエポキ シ樹脂接着剤により接合し一本の鉄筋とした。ゲージの 貼り付け間隔は 3D(48mm)である。なお、ひずみ計測を 行わない鉄筋には、通常の鉄筋を用いた。

3. 鉄筋の腐食性状

表-3 に各試験体における主鉄筋の腐食領域での腐食 率を示す。腐食率の算出方法は、電食以前の健全鉄筋と 腐食鉄筋の質量差を健全鉄筋の質量で除することにより 算出した。いずれの試験体においても、引抜鉄筋の平均 腐食率は目標腐食率に近い値を示している。

4. 付着応力 - すべり量関係

図-2(a)~(f)に各試験体の付着応力-すべり量(τ s)関係を示す。Aシリーズは、それぞれ付着切り端部か らの距離が 16D, 19D, 22D における τ - s 関係を示し ており、同様にBシリーズは、それぞれ載荷点端部から の距離が 12D, 15D, 18D における r - s 関係を示して いる。また図中に示す曲線は、島らによる提案式である ³⁾。どちらのシリーズにおいても、非腐食試験体の τ s関係は島の式と良好な一致を示している。同図(b)に示 した試験体 A-10 と同図(e)に示した試験体 B-10 を比較 すると、付着応力の値は、いずれの位置においてもB-10 が A-10 より大きな値を示している。これは、実測腐食 率や腐食ひび割れ幅の違いの他に、鉄筋間隔の違いが要 因として挙げられる。両シリーズ試験体の端面の腐食ひ び割れ性状を比較してみると、Aシリーズ試験体におい ては、側面および底面方向のかぶり方向の他に、鉄筋間 を貫通するひび割れが発生していたが、Bシリーズ試験 体においては、鉄筋間隔の開きが大きいことから、その ようなひび割れが発生しておらず、側面および底面方向 のかぶりのみに進展していた。

同図(c)に示した試験体 A-20 および同図(f)に示した 試験体 B-20 においては,付着応力に明確な差異は生じて いない。これは腐食率が比較的大きいことから,B-20 においても鉄筋間を貫通するひび割れが発生しており, かぶりの拘束が著しく低下したためであると考えられる。

5. 結論

本研究では,鉄筋腐食した RC 構造物の付着性能に及 ぼすかぶり厚(鉄筋間隔)の影響を評価した。以下に本研 究で得られた知見を要約する。

(1)鉄筋腐食を生じた RC 部材の付着応力性状は,かぶり コンクリートに発生した腐食ひび割れ性状によって相違 する。したがって,かぶり(鉄筋あきを含む)が大きい ほど,コンクリートの拘束は低下しないため,付着応力 の低下は抑制される。

(2)本実験の範囲内では、かぶりが大きい場合においても、 腐食ひび割れが発生すると、コンクリートの拘束は急激 に低下し、付着応力性能は著しく低下した。

参考文献

 村上祐貴,木下哲秀,鈴木修一,福本幸成,大下英 吉:鉄筋腐食を生じた RC 梁部材の残存曲げ耐力性状 に関する研究,コンクリート工学論文集,vol.17,

No.1, pp.61-74, 2005

2)福井亨平,佐藤優,鈴木修一,大下英吉:定着を有する腐食鉄筋とコンクリートの付着応力性状に関する研究、コンクリート工学年次論文報告集、2005.1
3)島弘,周礼良,岡村甫:マッシブなコンクリートに埋め込まれた異形鉄筋の付着応力-すべり-ひずみ関係,土

木学会論文集, No.378, V-6, pp.165-174, 1987.2