1. はじめに アンカー工法は擁壁や斜面の安定、 構造物の浮き上がり防止、地中壁の安定確保などに 利用され、構造物の基礎補強に有効であり、地震時 の挙動についても有効性が高いとされている。しか しながら現時点でその現象が十分把握されていない。 そこで、アンカー定着耐力の機構を把握することを 目的として模型を用いた圧縮型グランドアンカーの 静的及繰返し引抜き試験を行った。

2.実験概要(1)模型内の地盤及びモルタル 模型 は鋼板で作った直方体の53cm×53cm×47cmの土槽を 使用する。土槽内部中央に予め外径55mmのボイド管 を設置し、その周りに模擬地盤としてソイルセメン トを流し込む。養生後にボイル管を取り除き、その 中に圧縮型グランドアンカーを設置し、モルタルを 流し込むことにより供試体を作成する。模型内の地 盤及びモルタルの配合については表-1に示す。また、 地盤強度、載荷パターン、最大荷重、最終破壊形式 については表-2に示す。

表-1 地盤及びモルタルの配合

供試体			ー体あたりの配 ()内は case2 以	合量 、降				
供試体内ソイルセメト			8 号珪砂	152.9(161.4)	kg			
高さ	47.00	cm	早強セメント	16.91(8.49)	kg			
幅	53.00	cm	水道水 67.92		kg			
セメント ミルク	w/c=50%		配合量(1 体当り)					
アンカー直径	5.5	cm	早強セメント	1362.61	g			
アンカー高さ	47.0	cm	水道水	681.30	g			
セメント添加率 10%(case2 以降は5%)								
8 号珪砂		1.29	g/cm ³					
早強セメント		3.13	g/cm ³					
水道水		1.00	g/cm ³					

(2)試験に用いるアンカー 試験には圧縮型グランド アンカーを用いた。アンカーの寸法は図-1 に示すよ うに全長 640mm で PC ケーブルの径は 9.5mm である。 PC ケーブルとアンカーは底部で固定されている。引 張部には PC ケーブルを使用し、アンカー体の4カ所

早稻田大学	学生会員	○矢野	良尚
早稲田大学	フェロー	清宮	理
早稲田大学	正会員	安同	司祥
エスイー(株)	正会員	竹家	宏治

にひずみゲージ a-1、a-2、a-3、a-4 を取り付けた。 さらに PC ケーブルにも 1 カ所にひずみゲージを取 り付けた。取り付け位置に関しては図-1 に示す。

表-2 試験ケースと試験結果の一覧

	載荷方法	地盤強度	最大荷重	破壞形式
		(kN/m^2)	(kN)	
Case1	単調載荷	1085	36.26	地盤の破壊
Case2	単調載荷	254.8	17.84	地盤の破壊
Case3	低サイク	256.5	17.82	地盤の破壊
	ル載荷			

(3)試験方法 250kN オートグラフを用いて単調載 荷及び繰返し載荷試験をすることで圧縮型グラン ドアンカーの定着耐力の機構を把握する。Case1 と Case2 では単調載荷、Case3 では繰返し載荷を行う。 アンカー体の定着耐力がなくなるまで引き抜き、そ の際に3秒に1回ずつ各地点でのひずみを測定す る。繰返しパターンは図-2に示す。

図-1 ひずみゲージ取り付け位置及アンカーの寸法 3.結果及び考察 図-2 より case1 と case2 を比 較すると、case1 の方が case2 よりも最大荷重が大 きかった。アンカーの定着耐力は地盤の強度の影 響を大きく受けていた。表-2 より case2 と case3 を比較すると、最大荷重が非常に近い値である。 これは、地盤強度の値が case2 と case3 で非常に 近いからであると思われる。繰り返し載荷は引張 荷重が 13kN で 14 回、14kN で 10 回、16kN で 10 回、 17kN で 16 回実施したが破壊には至らなかった。 17.8kN で載荷したとき地盤が破壊した。case3 は 繰返し載荷なので、繰返しによりアンカー体周辺 の地盤が次第に緩み、case2 より最大荷重が小さく

連絡先 〒169-8555 東京都新宿区大久保 3-4-1 早稲田大学理工学部社会環境工学科清宮研究室 キーワード 圧縮型グランドアンカー 地盤補強 繰返し載荷 なると考えていたが今回の実験でそのような傾向は みられなかった。図-4、図-5、図-6及び図-7より、 圧縮型アンカーのアンカー体のひずみの値は、地盤 中の深い場所に位置するほど大きくなった。a-1、a-2 地点はどのcaseをみても圧縮の力が働いていること がわかるが、a-3、a-4に関しては圧縮力が働いてい るときと引張力が働いているときがありcaseによっ ても載荷状況や各地点での付着状況によっても異な る結果になった。これは、地盤とアンカーとの付着 の状態による違いであると考えられる。

4. まとめ 本実験で得られたことを以下に示す。 今回の終局の破壊形式は地盤の付着破壊であり、グ ランドアンカーの定着耐力は地盤強度に依存した。 圧縮型のアンカー体は地盤中の深い場所に位置して いる地点ほどひずみの値が大きくなった。単純載荷 と繰返し載荷の違いによるグランドアンカーの定着 耐力の違いを確認することはできなかった。多数の 繰返し載荷によって強度が低下することがみられな かった。

図-3 case3の荷重とストロークの関係

図-4 荷重と各地点でのひずみの関係(case1)

図-5 荷重と各地点でのひずみの関係(case3)

図-7 深さ方向でのひずみと荷重の関係(case3)