盛土破壊の事例解析と性能設計

Depth, z (-m)

防衛大学校	(学)	熊谷	尚久,	(正)	正垣	孝晴
興亜開発㈱	(正)	山田	辰也			
東京電力㈱	(正)	高橋	章			

1. はじめに

地盤構造物設計の説明責任や性能規定化等に伴い地盤調査・ 試験法の精度を把握する機運が一層高まっている。本稿では各 種チューブサンプラーで採取した粘性土と有機質土の非排水強 度の測定値とそれらの原位置の推定値に加え,小型供試体を用 いて測定した異方強度を用いて,茨城の陸域の破壊した道路盛 土を対象に,その安定性が検討される。 原位置の非排水強度と 異方性を考慮すると築造中の盛土の安定性と破壊の変状が説明 できることに加え,最適設計が行えることが示される。

2. 盛土の変状,地盤調査の概要,供試土と試験方法

茨城県下の当該盛土施工時に法肩から 12m程度の位 置にクラックが発生し,法尻から 20m程度の範囲に地 盤の盛り上がりが生じた(後述,図-8)。この変状を 解明するために,盛土施工の当該地内でJGS 1221-2003¹⁾に従うチューブ内径 75mmのサンプラー (75-mm)と 45-mm/50-mm²⁾とConeサンプラー³⁾で乱れの 少ない試料を採取した。

採取試料に対しては、小型供試体を用いてサクショ ン測定を伴う一軸圧縮試験⁴⁾, K₀圧密三軸圧縮試験⁵⁾ CK₀UC,段階載荷圧密試験ILを行った。また、75-mm から得た試料に対しては、図-1 に示すように堆積方 向に対する供試体の切り出し角度βを変えた一軸圧縮試験UCT から強度異方性を測定した。供試体は,d15mm,h35mmの小型供試 体を用いた。強度試験時のせん断条件は非排水とし、CK₀UCの、 圧密圧力は 10,20,30,40,50kPa, ひずみ速度はUCTとの対応を考 慮して 0.05 と 1.0%/minの 2 種類とした。

3. 強度試験結果と原位置の非排水強度

UCT結果を深度zに対して図-2に示した。ここに、 w_n , ρ_t , q_u , ε_f , E_{50} , S_0 は,それぞれ自然含水比,湿潤密度,一軸圧縮強さ、変形 係数、サクションである。z=0~0.7mが耕作土, z=0.7~3.5mが粘 性土 (C1 層)、z=3.5~6.7mが高有機質土(O層;強熱減量値 L_i =42 ~73%、塑性指数 I_p =199~370)、それ以深が粘土質シルト(C2 層; I_p =34~63)である。珪藻化石分析等から、O層は気水性、C2 層は 海水性の沖積土である⁶。

Soil	Sampler	C _u	п	\overline{c}_{u} (kPa)	Vc u
Soft clay (C1)	75-mm	$q_{\rm u}/2$	4	12.1	0.14
		$q_{u(I)}/2$	4	15.5	0.21
		$C_{u(I)}$	1	12.3	_
	45-mm	$q_{\rm u}/2$		-	_
		$q_{\rm u(I)}/2$		-	_
		C u(I)		-	_
	75-mm	$q_{\rm u}/2$	19	15.5	0.33
Organic		$q_{\rm u(I)}/2$	15	18.4	0.28
		$\mathcal{C}_{u(I)}$	2	18.3	0.11
(O)	45-mm	$q_{\rm u}/2$	26	15.3	0.48
. ,		$q_{\rm u(I)}/2$	17	17.2	0.29
		C u(I)	2	19.4	0.07
	75-mm	$q_{\rm u}/2$	17	12.3	0.51
Soft clay (C2)		$q_{\rm u(I)}/2$	13	14.9	0.11
		C _{u(I)}	1	15.3	_
	45-mm	$q_{\rm u}/2$	27	12.0	0.55
		$q_{u(I)}/2$	19	19.3	0.29
		C _{u(I)}	3	20.0	0.16

表-1 非排水強度の統計量

図-5 圧密降伏応力の深度分布

n : Number of specimen, \overline{c}_{u} : Mean value of c_{u} , Vc_{u} : Coefficient of variation of c_{u}

45・mmと 75・mmサンプラーで得たO層とC2 層に対し、 q_u と簡便法で推定した原位置の非排水強度 $^{7}q_{u(l)}$ の ヒストグラムとその正規分布曲線をそれぞれ図**-3と4**に示す。また、各サンプラーから得たこれらの非排 水強度に加え、図**-5**に示す原位置の圧密降伏応力⁸⁾ $\sigma'_{p(l)}$ 下の非排水強度 $^{7}c_{u(l)}$ の統計量を表-1に示す。ここ で、 $\sigma'_{p(l)}$ はC K_0 UCとILの体積ひずみ⁸⁾ と圧密降伏応力 σ'_p の関係から得た。 σ'_p は試料の乱れに起因して $\sigma'_{p(l)}$ の (67~79)%と小さい。 $q_{u(l)}$ 2の平均値と $c_{u(l)}$ は同等である。しかし、 q_u /2の平均値は試料の乱れに起因 して、 $q_{u(l)}$ 2の(62~89)%と小さい。

4. 非排水強度異方性

75-mmサンプラーで得た試料から測定したO層の強度異方性 (UCT結果)を図ー6に示す。 S_0 は同等であるが、 β が大きくなると q_u と E_{50} は小さくなる。紙面の都合で割愛したが、C2 層についても同様であった。図ー7 に鉛 直供試体の q_u の平均値 $q_{u(0^\circ)}$ に対する各 β の q_u の比 $q_{u(\beta)}/q_{u(0^\circ)}$ の比を β に対してプロットした。図ー7 にはプロッ トに対する近似曲線を実線(O層)と破線(C2 層)で示している。また、国内の 11 堆積地から同様に得た範囲⁹ とそ の内の平均的な曲線として浦安の結果を一点鎖線で併記した。OとC2 層の異方強度は他の堆積地⁹ の平均的なそ れより小さいことがわかる。特に β <60°の範囲は異方強度の

発現はなく等方的である。OとC2 層の $\beta = 90^{\circ}$ の q_u は $\beta=0^{\circ}$ のそ れの,それぞれ 70%と 85%である。初期と誘導異方性を考慮した 安定計算(IASIA法; Inherent And Stress Induced Anisotropies)⁹⁾ で用いる異方強度($q_u(1)/2_{(IASIA)}$)と β の関係は,図-7で示した実 測値を用いるが、この異方強度が安全率に及ぼす影響は 3%程度 (後述表-2)と小さい。

5. 非排水強度,盛土の安全率と破壊変状の関係

表-1 に示した 75-mm, 45-mm, Cone/50-mmサンプラーから 得た非排水強度を用いて盛土の安定性を検討した。これらのサ ンプラーと非排水強度に対し,円弧滑り計算から得た安全率の 最小値 ($F_{s(min)}$)を表-2に示している。

なお, *F*_{s(min)}は盛土施工時の施工機械の交通荷重として, 9.8 kPaを盛土表面に付加して計算した。盛土が施工された地盤は, 表層から耕作土(T), 第1粘土(C1), O層, C2層からなるが,

図-6 強度異方性 (Organic)

各サンプラーから得た q_u の安全率は1より小さく、 $q_{u(l)}/2$ と $c_{u(l)}$ も1近傍の値である。これは、盛土が大きく変状したことと符合している。

75-mmサンプラーの $F_{s(min)}$ を与える円弧を図-8 に示した。 また, 図-7 の結果を用いてIASIA法の結果も盛土の変状 と併せて示した。 q_{u} , $q_{u(I)}/2$ と $q_{u(I)}/2$ を用いたIASIA法 $q_{u(I)}/2_{(IASIA)}$ から得た $F_{s(min)}$ は, それぞれ 0.872, 1.039, 1.016 で あり, これらの安全率に対応した滑り円弧は盛土の破壊の 変状もよく説明している。このことは 45-mmサンプラーか ら得た非排水強度の場合にも同様であった。

6. 盛土の最適設計

45-mmサンプラーで得た $q_u/2$, $q_{u(1)}/2$, $q_{u(1)}/2_{(IASIA)}$ に対する 破壊確率 P_f , 消費者危険率 β と試験個数の関係を**図**-9 に示 す。ここで, $q_{u(1)}/2_{(IASIA)}$ の変動係数は, $q_{u(1)}/2$ のそれと同じ 値を用いた。 $P_f \geq \beta$ は既報¹⁰⁾と同様に算定している。非排水 強度の平均値の差を反映して同じn下の P_f は $q_{u(1)}/2$, $q_{u(1)}/2_{(IASIA)}$, $q_u/2$ の順に大きくなる。 $q_{u(1)}/2$ の P_f はn=50の試 験を行っても47%と大きい。一方, $q_{u(1)}/2$ の β は同じ供試体 数の下で $q_{u(1)}/2$ の P_f より大きい。 $q_{u(1)}/2$ の β は同じ供試体 なの下で $q_{u(1)}/2$ の P_f より大きい。 $q_{u(1)}/2$ の β は同じ供試体 な、実務でも容認される数である。しかし, $q_{u(1)}/2$ の β は $q_u/2$ の値より小さい。 P_f と同様に、これは $q_{u(1)}/2$ が $q_u/2$ より 大きいことに起因している。したがって、 $q_{u(1)}/2$ は消費者危 険率を小さくする効果がある。IASIA法による $P_f \geq \beta$ は地盤 を等方と仮定したそれらの値より大きく、地盤を等方性と する検討は危険側の設計結果を与えることになる。

nと建設総費用 C_t に及ぼす β の影響を検討するため、 45-mmサンプラの $q_{u(1)}/2$ から得た等方IsopropicとIASIAの C_t とnとの関係を図-10に示す。また、表-2には75-mmと 45-mmサンプラーから得た非排水強度に対する $C_{t(min)}$ 、 P_f 、 β 、 $F_{s(min)}$ も併せて示した。表-2の P_f と β は、 $C_{t(min)}$ に対応する

値を示している。表-2に示すように、45-mmで地盤を等方性とした場合、 C_t はn=25で最小値 $C_{t(min)}=570$ 千円/m になる。一方、IASIAではn=44で $C_{t(min)}=582$ 千円/mとなる。地盤を等方とした場合は、これらの値や P_f 、 β を過小評価することになる。75-mmと 45-mmの P_f と β を比較すると、後者の値が小さい。以上のことは、試料の乱れとIASIA 法を考慮すると性能規定に基づく最適盛土設計が可能であることを示している。

従来, q_u/2 の平均値が盛土の破壊をよく説明すると言われてきた^{11),12)}。調査・試験法,設計計算式,施工に含 まれる各種の誤差要因がラッキーハーモニーを保っているとの考えである。しかし,この考えを導いた盛土の安 定性が検討されてから随分と久しい。調査・試験法,設計計算式,施工に含まれる各種の誤差要因の内容も水準 も当時から変化して,このラッキーハーモニーを保障する確たる担保は現在は乏しいと考えている。本稿で採り 上げた事例は,陸域の施工速度の速い盛土であった。加えて,道路盛土の安定性の検討に指定¹³⁾されている円弧 滑り計算による結果である。 本稿の結果のみから、 $q_{u(l)}/2$ とIASIA法が他のすべての 盛土の安定性をよく説明できるとは勿論考えていない。 しかし、小型供試体を用いて $q_{u(l)}/2$ と異方強度を得る手法 は、実務レベルで適用できるため、地盤工学や設計信頼 度、説明責任の向上、建設コストの縮減効果等が大きい^{10)、} ¹⁴⁾。破壊事例に対する検証等の中で設計強度の採用値を 検討していく地道な努力が、今後も一層望まれる。

7. おわりに

本稿の主要な結論を要約すると以下のようである。

 測定した圧密降伏応力σ'_pは,正垣の方法⁸⁾で推定 した原位置の圧密降伏応力σ'_{p(1)}の(67~79)%であ った。一軸圧縮強度q_uは,K₀圧密三軸圧縮試験のσ'_{p(1)} 下の非排水強度c_{u(1)}の(60~85)%であった。また,q_u とサクションを用いて簡便法⁷⁾で推定した原位置の 非排水強度q_{u(1)}/2は,c_{u(1)}と同等であった。

	Sampler	Shear strength	specimen	(K yen/m)	$P_{\rm f}(\%)$	$\beta(\%)$	F s(min)
	75 mm	$q_{\rm u}/2$	_	—	-	-	0.872
_	/3-11111	$q_{\rm u(l)}/2$	84	648	10.4	21.2	1.039
	75-mm	$q_{\rm u}/2$	-	-	-	-	0.853
	(IASIA)	$q_{u(I)}/2$	113	682	14.5	25.6	1.016
	45 mm	$q_{\rm u}/2$	-	_	-	1	0.863
	45-11111	$q_{\rm u(I)}/2$	25	570	0.5	1.6	1.073
	45-mm	$q_{\rm u}/2$	-	-	-	-	0.844
	(IASIA)	$q_{u(I)}/2$	44	582	1.5	6.6	1.060
	$C_{t(min)}$: Minimum total cost, P_f : Probability of failure, β : Consumer's risk, $F_{s(min)}$: Minimum F_s						

2) 堆積方向からの供試体の切り出し角度 β を変えた
一軸圧縮試験から強度異方性を測定した。高有機質土(O
層),粘性土(C2 層)ともβ<60°の範囲は異方強度の発現はなく等方的であった。O層とC2層のβ=90°のq_µ

は0°のそれらの、それぞれ70%と85%であった。

- 3) $q_{u,n}, q_{u(l)}/2 \geq q_{u(l)}/2$ に測定した異方強度 $q_{u(l)}/2_{(IASIA)}$ を用いた最小安全率 $F_{s(min)}$ は、それぞれ 0.872, 1.039, 1.016 であり、これらに対応したすべり円弧は盛土の破壊の変状もよく説明した。
- 4) 地盤を等方性として計算した総費用,試験個数, F_{s(min)},消費者危険率βは,地盤の異方強度とそれを用いた安定解析法(IASIA)の結果を過小評価した。試料を採取するサンプラーや非排水強度の性能規定と破壊確率,消費者危険率,総費用最小基準下の最適盛土設計の方法を示した。

参考文献

- 1) Japanese Geotechnical Society.: Method for obtaining Soil Samples using Thin-walled tube sampler with fixed piston (JGS 1221-2003), *Standards of Japanese Geotechnical Society for obtaining Soil Samples*, 1-9, 2005.
- 2) Shogaki, T, and Sakamoto, R.: The applicability of a small diameter sampler with a two-chambered hydraulic piston for Japanese clay deposits, *Soils and Foundations*, Vol.44, No.1, pp.113-124, 2004.
- Shogaki, T., Sakamoto, R., Kondo, E. and Tachibana, H.: Small diameter cone sampler and its applicability for Pleistocene Osaka Ma 12 clay, *Soils and Foundations*, 44 (4), 119-126, 2004.
- 4) (社) 地盤工学会, サクション測定を伴う一軸圧縮試験マニュアル, 最近の地盤調査・試験法と設計・施工への適用に関 するシンポジューム発表論文集, pp.付 1-14, 2006.
- 5) Shogaki, T. and Nochikawa, Y.: Triaxial strength properties of natural deposits at K_0 consolidation state using a precision triaxial apparatus with small size specimens, *Soils and Foundations*, 45 (2), pp.41-52, 2004.
- 6) 堆積環境調査による地層評価,地盤調査・試験法の小型・高精度化に関する研究委員会成果報告書, 最近の地盤調査・ 試験法と設計・施工への適用に関するシンポジウム発表論文集, pp.103-110, 2006.
- 7) Shogaki,T.: An improved method for estimating *in-situ* undrained shear strength of natural deposits, *Soils and Foundations*, 46 (2), pp. 109-121, 2006.
- 8) Shogaki, T.: A method for correcting consolidation parameters for sample disturbance using volumetric strain, *Soils and Foundations*, 36 (3), pp. 123-131.
- 9) Shogaki, T. and Kumagai, N : A slope stability analysis considering undrained strength anisotropyof natural clay deposits, Proc. of 13th Asia Regional Conf on Soil Mechanic and Geotechnical Eng., Theme lecture, 2008.
- Shogaki, T, Kumagai, N and A, Takahashi : Reliability of the undrained shear strength and a proposed optimum embankment design method, *Soils and Foundations*, in printing.
- 11) Nakase, A.: The φ_u = 0 analysis of stability and unconfined compression strength, *Soils and Foundations*, 7 (2), pp. 35-50, 1967.
- 12) Matsuo, M and Asaoka, A.: A statistical study on a conventional "Safety Factor Method", *Soils and Foundations*, 16(1), pp.75-90, 1976.
- 13) 道路土工 軟弱地盤対策工指針,(社)日本道路協会, pp.58-59, 2005.
- 14) (社)地盤工学会,地盤調査,室内試験のための小型・高精度化技術の適用と解釈,最近の地盤調査・試験法と設計・施 エへの適用に関するシンポジウム発表論文集, pp.203-221,2006.