コンクリートの割裂引張強度に及ぼす供試体寸法と圧力幅について

正 会 員	松村仁夫
正 会 員	黒井登起雄
学生	菊池 佑介
学生	大黒 陽祐
	正 会 員 正 会 員 学 生 学 生

1. はじめに

コンクリートの割裂引張強度は、JIS A 1132 に従って供試体を作製し、JIS A 1113 によって試験される。こ の試験方法は、2006 年 9 月に改正された。改正内容は、供試体直径が 150mm 以上であった規定を 100mm 以 上の小寸法から対応できるようにしている。しかし、供試体直径が小さくなると、コンクリートの引張強度 が大きくなることも指摘されている。そこで、本研究では、 100×200mm および 150×150mm の引張強度 試験用供試体を作製し、 150×200mm 供試体の引張強度との関係と、供試体寸法、コンクリートの引張強度 と圧力分布幅との関係を実験的に明らかにすることを目的とした。

2. 実験概要

2.1 使用材料

セメントは、普通ポルトランドセメン トを用いた。細骨材は、普通の粒度の川 砂(鬼怒川産)を、粗骨材は、最大寸法 20mmの良質の砕石(葛生町産硬質砂岩) を使用した。それぞれの物理的性質は、 表-1に示す。混和剤は、AE 減水剤(ヴ ィンソル 80)を用い、空気量の調整を AE 剤で行った。

2.2 実験要因と水準および実験方法
 (1) 実験要因と水準 水セメントは、
 高強度領域から普通・低強度領域の広範囲な圧縮強度レベルに対応するため、

表-1 使用材料および物理的性質

	種類(産地)	密 度(g/cm ³)	吸水率(%)	粗粒率
セメント	普通ポルトランドセメント	3.16		
細骨材	川砂(鬼怒川産)	2.61	2.24	2.89
粗骨材	砕石 硬質砂岩;葛生町産	2.64	0.59	6.73

粗骨材の最大寸法:20mm

表-2 配合およびフレッシュコンクリートの性質

	WIC	- /-		単位量 (kg/m ³)			フレッシュコンクリートの性質			
	(%) (s/a	w	C	C S	G	$\mathrm{Ad}_{\mathrm{WRAE}}$	Ad	スランプ	空気量
		(70)	vv	V C S	3				(cm)	(%)
	30	40.3	197	657	573	859	2.628	0.263	10.0	4.4
	40	42.3	162	405	729	1005	1.013	0.081	9.2	5.1
	50	46.3	160	320	832	976	0.800	0.064	10.2	5.6
	60	47.5	160	267	875	978	0.801	0.053	9.7	5.8
	65	43.3	160	246	805	1006	0.738	0.049	9.3	5.2

W/C=0.30、0.40、0.50、0.60 および 0.65 の 5 水準とした(スランプ 10±1cm、空気量(5±1)%の AE コンクリ ート)。配合およびフレッシュコンクリートの性質は、表-2 に示す。供試体は、 100×200mm、 150×150mm (150×300mm を半分に切断)および 150×200mm (JIS 規定、比較用)とした。

(2) 実験方法 コンクリートの練混ぜは、容量 100 %のパン型強制練りミキサを用いて、各配合とも 3 バッ チに分けて行った。練混ぜ量は、60 %とした。コンクリートのスランプおよび空気量は、各バッチにおいて 試験した(表-2)。供試体は、各バッチから 100×200mm、 150×200mm、 150×300mm 円柱形供試体を同 時に、それぞれ引張強度試験用に 3 個と、圧縮強度試験用に 3 個作製した。圧縮強度試験用供試体の打込み 面は、研磨仕上げとした。供試体の養生は、20±3 水中養生とした。コンクリートの割裂引張強度および圧 縮強度は、JIS A 1113 および JIS A 1108 に従って材齢 14 日、28 日、56 日にした。結果は、3 個の平均によっ て評価した。供試体加圧面の圧力分布幅は、材齢 28 日における割裂引張強度試験時に、それぞれの寸法の供 試体の加圧部に圧力測定シートを貼った幅 75mm、長さ 205mm の 2 枚の鋼板(厚さ 20mm)(圧力分布測定用 プレート)を挿入して測定した。圧力分布幅は、供試体の長さ方向に 10 等分してそれぞれにおける幅を測定 し、平均値で示した。結果は、圧力分布幅-直径比(b/d)で評価した。圧力測定シートは、中圧用(MS)と高

図-1 圧縮強度と割裂引張強度との関係

圧用(HS)2 種類を圧縮強度レベルに応じて換えた。

3. 実験結果および考察

3.1 引張強度の示方書算定式との照査

図-1 は, 圧縮強度と寸法の異なる供試体(150×200mm, 150×150mm(切断) 100×200mm)の材齢 28 日における割裂 引張強度(実測値)および標準示方書に基づいて算出した引張強度 (計算値、f^{tk}=0.23f_{ck}^{2/3})との関係を示す。図より、各供試体の割裂 引張強度の実測値は、圧縮強度が増大するとともに、示方書に基 づく計算値よりも若干大きくなる傾向がある。

3.2 割裂引張強度に及ぼす供試体寸法の影響

図-2 は、2003、2004 および 2006 年度の 150×200mm(JIS 規定) の引張強度と 100×200mm および 150×150mm の引張強度との 相関を示す。図-2 より、 100×200mm と 150×200 供試体の相関 は、普通強度領域および高強度領域においても、高いことが認め られる。しかし、 150×150mm 供試体の引張強度は、試験時の偏 心加圧の影響と考えられるバラツキにより、相関が認められない。 3.3 引張強度と供試体寸法における圧力幅の影響

図-3 は、コンクリートの試験時における線荷重部 分の圧力測定シートによる圧力分布幅測定の一例を 示す。図-4 は、コンクリートの引張強度と圧力分布 幅-直径比(b/d)との関係を示す。図-3 より、供試 体の線荷重による圧力分布幅は、圧力測定シートに よって明瞭に表示できることが確認できた。また、 図-4 より、直径 150×200mmと、 100×200mmの 場合における圧力分布幅は、高強度領域の引張強度 レベルでバラツキが小さくなる。3N/mm2 程度以下 の低強度領域では、バラツキが認められる。

4. まとめ

結果より、試験時の 100×200mm における圧力 分布幅-直径比の拡大のないことが明らかになった。

図-2 割裂引張強度の供試体寸法による相関 (2003~2006年度データ)

図-3 供試体の加圧部の圧力分布幅測定 の一例(W/C=60%、材齢28日)

す供試体寸法の影響(材齢28日)