高流動コンクリートの粘性が間隙通過性に及ぼす影響

宇都宮大学工学部	学生会員	石崎康暖	
宇都宮大学工学部	正会員	藤原浩巳	
宇都宮大学工学部	正会員	丸岡正知	
宇都宮大学院工学研究科	学生会員	渡辺	暢

1.はじめに

高流動コンクリートが型枠内の間隙を流動する際, 圧力損失が生じ,充填不良が生じる.これを防ぐ為, 圧力損失メカニズムを解明し,間隙通過性を予測する ことは重要である.しかし,流動時の挙動が複雑な為, 簡易的に予測することが困難である.

本研究は圧力損失の簡易的な予測を目標とし,その 一環として,モルタルの粘性の違いによる間隙通過性 への影響について検討した.

2. 圧力損失メカニズム

本研究では,高流動コンクリートが間隙部を通過す る際の圧力損失メカニズムを以下のように想定した.

(1)間隙部での粗骨材の停滞・濃縮

高流動コンクリートが型枠内を自己充填する際,間 隙部において粗骨材が鉄筋との接触,回転運動により, 材料分離を生じ,粗骨材が停滞する.これにより,間 隙直前部で粗骨材の濃縮現象が生じる.

(2)間隙部での降伏値及びせん断抵抗の増大

粗骨材が濃縮した間隙部周辺のコンクリートは,変 形抵抗が大きくなり,見掛け上降伏値が増大する.

(3) 圧力損失の増大

コンクリートの降伏値が見掛け上増加し,圧力損失 が増大する.

3.モデル高流動コンクリート流動実験

3.1 実験概要

(1)実験方法及び実験条件

流動するコンクリートの内部状態を把握する為,可

Key Words 間隙通過性 塑性粘度 降伏値 可視化モデル 圧力損失 連絡先 〒321-8585 栃木県宇都宮市陽東 7-1-2 宇都宮大学工学部建設学科 TEL 028-689-6209

視化可能なモデルコンクリートを用い,可視化実験を 行った.流動試験は,図-1 に示すモデル型枠のA槽を モデルコンクリートで満たし,ゲートを開放し,流動 が停止するまでの水平流動部の様子をビデオカメラで 撮影した.圧力損失は,流動停止後のA槽とB槽の表 面高さの差を測定し,式(1)により算出した.これを間 隙通過による圧力損失 Pとした.

$$\mathbf{P} = \mathbf{\cdot} \mathbf{g} \mathbf{\cdot} \quad \mathbf{h} \tag{1}$$

g:重力加速度(m/s²), h:損失高さ(mm)

表-1 に本実験における,実験因子及び水準を示す. モデルモルタルは水と増粘剤を適量に混合したものを 使用した.モデルモルタルは材料分離がなく,粘性過 剰により流動性を失わない範囲で,増粘剤添加率を3 水準とした.粗骨材体積濃度Xvは,高流動コンクリー ト施工指針における自己充填ランク1の範囲を元に設 定した.間隙幅Lも,同指針を参考に範囲を設定した.

(2) 濃縮部粗骨材量の推定方法

図-2 に示すように,水平流動部に検査領域AREA1, AREA2 を設けた.停止時の静止画像を二値化処理し, AREA1 及びAREA2 における高輝度部分の面積割合を 粗骨材面積割合S₁,S₂とし,式(2)により粗骨材体積増分 Xvを求めた.

$$\Delta Xv = \frac{S_1 - S_2}{S_1 + S_2} Xv$$
 (2)

S₁, S₂: AREA1 及びAREA2 の粗骨材面積割合(%) Xv['] = Xv+ΔXv (3)

3.2 粗骨材の停滞・濃縮の検証

図-3に配合時のXvに対する濃縮後の粗骨材体積濃度 Xv'の比(Xv'/Xv)と配合時のXvとの関係を概念的に示 す.これより,配合時のXvが増加するに伴い,Xv'/Xv も増加し,Xvの一次直線に近似できると考えられ,粗 骨材量変化率を用いて,式(4)のように表すことがで きるとした.

$$\frac{Xv'}{Xv} = \Gamma Xv + 1 \tag{4}$$

また,間隙幅が大きくなる程, は減少すると考え られる為, は間隙条件の関数となることが考えられ る.そこで,式(5)のように,相対間隙比 Lr を定義し,

と Lr の関係を式(6)のように定義した.その関係を図 -4 に示す.さらに, a 及び b をレオロジー特性の影響を 含む定数と考え,粘性の影響について検証した.

上記の考えに基づき,画像解析により得られた Xv² を用い, 及び a, b を導出した.その結果を図-5~7 に示す.また,図-7から求めた a 及び b とモルタルの 塑性粘度ηm との関係を式(7),(8)に示す.

$$Lr = \frac{L}{L+D} \quad (L:間隙幅 \quad D:鉄筋径)$$
(5)

$$= aLr^{-b}$$
(6)

$$a = -0.01167\eta_{\rm m} + 0.02447 \tag{7}$$

$$b = -0.5064\eta_{\rm m} + 4.587 \tag{8}$$

図-5 より は間隙条件が緩和するに伴い減少する. また,間隙条件が同一の場合,粘性の増加に伴い は 減少し,粘性の増加による濃縮の緩和が認められた. これは粘性が増加することで,間隙部における固体間 摩擦力の増加が抑制された影響と考えられる.
$$\tau_{\rm c} = \{(6.816\eta_{\rm m} - 0.509) \mathrm{Xv} + 1\} \tau_{\rm m}$$
(9)

$$\tau_{\rm m} = -0.553 R_{\rm o} + 203.7 \tag{10}$$

$$\eta_{\rm m} = 0.0251t_{14} + 0.387 \tag{11}$$

3.4 圧力損失の推定

式(12)に示す,圧力損失の力学モデル式に式(4)~(11) を代入し,圧力損失推定値 Pを求め,実測値と比較し た(図-8参照).その結果,推定式は実測値との大きな 乖離は認められず,本推定方法により,概ね圧力損失 を予測することが出来たと考えられる.

$$P = \frac{2D}{D+L}\tau_c$$
(12)

前項より,粘性が増加する程,濃縮が抑制出来ることを確認した.一方で,粘性の増大により圧力損失は 増大する.これより,種々の条件(Xv や間隙幅)が, 濃縮が顕著になる範囲でなければ,粘性を抑制するこ とにより,圧力損失は抑制することが出来る.よって 施工条件により,適切な粘性が存在すると考えられる. 4.まとめ

圧力損失メカニズムの各モデルにおける推定式・理 論式を示し,粘性を考慮した簡易的な圧力損失推定式 を導出し,推定した。その結果,本推定方法により概 ね圧力損失を予測することが出来た.

参考文献

1) 兼松ら:高流動コンクリートの間隙通過性評価:
その 1. 評価方法,日本建築学会学術講演梗概集.
A-1,材料施工 Vol.1999, pp.361-362