常時微動計測を用いた RC 橋脚の振動特性について

宇都宮大学	学生員	角田	真彦
宇都宮大学	正会員	中島	章典
日本大学	正会員	中村	晋
栃木県宇都宮	土木	長瀬	政明

1. はじめに

現在橋梁の橋脚の基礎形式には,ケーソン式基礎,杭式基礎,直接基礎といった形式が使用される.基礎や橋脚の周辺には地盤が存在し,これらは橋脚に地震力を伝える役割とともに,橋脚の振動を拘束する役割を持ち,橋脚そして橋梁全体の振動特性に影響を与える.構造物の振動を解明するためには,地盤-構造物系の動的相互作用効果を解明することが 重要である.

そこで本研究では,実橋脚の常時微動計測を実施し,橋脚 の固有振動数を求める.その後,平面骨組みのための有限要 素法による固有値解析において,橋脚,地盤のモデル化を行 う.橋脚-地盤系のモデル化を考える際には,第1段階とし て,根入れを考慮せずに,橋脚基部の節点を固定した場合お よび地盤ばねを挿入した場合で解析を行う.次に,根入れを 考慮したモデル化を行う.根入れ部分の地盤が橋脚に与える 影響として,質量効果とばね効果を考慮し,質量効果は要素 の単位体積重量を増加させることで,ばね効果は節点に水平 ばね要素を挿入することでモデル化する.これらのモデル化 を行い,橋脚-地盤系の固有振動特性を解析的に再現するこ とを目的としている.

2. 常時微動計測概要

本研究の対象橋梁は栃木県宇都宮市内にある新鬼怒川渡 河橋である.橋脚形式は張り出し式 RC橋脚,基礎形式は 直接基礎である.対象橋梁の下部工数は合計16橋脚,2橋 台である.今回の計測では計6本の橋脚を対象に計測を実 施した.この6本の橋脚をP6,P7,P8,P9,P10,P11 橋脚と呼ぶ.P6からP10橋脚の5本は橋脚単体で,P11 は上部構造に連結された状態で計測を実施した.対象とする 橋脚の側面図および橋脚寸法を図-1,表-1に示す.計測は 橋脚の頂部と地盤表面の2ヶ所に常時微動計測器を設置し, 橋軸方向,橋軸直角方向,鉛直方向の3方向について,速 度の時刻歴を時間刻み0.01秒で180秒間(18000点)計測を 行った.1回目に橋軸方向と鉛直方向の計測を行い,2回目 に橋軸直角方向と鉛直方向の計測を実施した.

3. 常時微動計測からの固有振動数の算出

RC 橋脚の常時微動計測データからフーリエスペクトルを 求め,橋脚頂部のフーリエスペクトルを地表面位置のフーリ エスペクトルで除したスペクトルのピーク位置の振動数から 固有振動数の実験結果を求めた.

図-2 有限要素モデル

4. 解析概要

14

本研究では,図-1に示す橋脚を図-2に示すように13要素に分割し,橋軸方向および橋軸直角方向の2方向について,平面骨組のための有限要素法による固有値解析を行った.固有値解析ではせん断変形,橋脚の張り出し部分,フーチング部分の影響を考慮した.橋脚基部の支持条件には,節点番号14番を水平,鉛直,回転方向に完全拘束した場合(固定端条件)および節点番号14番に水平,鉛直,回転ばねを挿入し,フーチング下面の地盤の影響を考慮した場合の2通りで解析を行った.

5. 実測結果と解析結果の比較

橋脚の固有振動数の実験結果と解析結果の比較を表-2, 表-3に示す.支持条件を変えた場合の橋軸方向,橋軸直角 方向の1次振動モード図を図-3に示す.橋軸方向では,実 測値が橋脚基部の支持条件を固定端とした場合の解析値より も大きくなる結果になった.実測値と解析値の誤差は最も大 きいP6橋脚で23.2%,最も小さいP8橋脚で2.2%となっ

Key Words: 常時微動,振動特性, RC 橋脚

〒 321-8585 宇都宮市陽東 7-1-2 宇都宮大学工学部建設学科 Tel.028-689-6208 Fax.028-689-6208

-	橋脚名	P6	P7	P8	P9	P10	P11
-	t_1	2600	2800	3000	3000	3200	3800
-	t_2	10500	10500	10500	10500	10500	12000
	t_3	3950	3850	3750	3750	3650	4100
	l_1	15600	16600	17500	18500	19500	20400
	l_2	10400	9900	9100	9600	11100	11500

表-1 橋脚の寸法 (単位: mm)

表-2 実験結果と解析結果の比較 - 橋軸方向

橋脚名	実測結果	解析結果 (Hz)	
	(Hz)	固定端	地盤ばね挿入
P6	5.493	4.460	3.592
$\mathbf{P7}$	4.712	4.265	3.364
P8	4.224	4.132	3.184
P9	4.053	3.738	2.927
P10	4.126	3.600	2.760

表-3 実験結果と解析結果の比較 - 橋軸直角方向

橋脚名	実測結果	解析結果 (Hz)	
	(Hz)	固定端	地盤ばね挿入
P6	8.032	14.614	5.479
P8	5.371	11.874	4.704
P9	5.737	10.822	4.300
P10	5.957	9.827	4.048

図-3 橋脚基部を固定端とした場合と地盤ばねを挿入した場 合の1次振動モード

た.橋軸直角方向では,実測値が2通りの解析値の間の値と なり,支持条件に地盤を考慮した解析結果が実測結果に近 くなった.この結果は橋軸方向とは異なる傾向である.この 場合,最も誤差が大きいP6橋脚では46.6%,最も誤差が小 さいP8橋脚では誤差14.2%となった.図-3の橋軸直角方 向の1次振動モードは,地盤ばねを挿入した場合の固有振動 モードが固定とした場合に比べて直線的な振動モードをして いることから,橋脚基部の回転ばねが橋脚の振動特性に強く 影響していると考えられる.これらの誤差原因としては,橋 脚周辺の根入れ部分の地盤の影響を解析に考慮していなかっ たことが考えられる.そこで橋脚周辺の地盤を解析モデルに 組み込むことで,より再現性の高い結果を目指した.

図-4 橋脚-地盤系の有限要素モデル

6. 根入れ部分のモデル化

橋脚周辺の根入れ部分が橋脚に及ぼす影響としては,地盤 による質量効果およびばね効果が考えれる.そこでこの2種 類の効果について以下のようにモデル化を行った.

まず,ばね効果は地表面以下の図-4に示すように橋脚モ デルの地表面以下の節点に水平ばねを挿入する.この時,水 平ばねのばね定数には橋脚前面の水平反力と橋脚側面の水平 せん断反力を考慮した.橋脚前面の水平反力は橋脚前背面の うち,地盤を圧縮する面においてのみ考慮し,橋脚側面の水 平せん断反力については,両側の側面で地盤が抵抗するもの とした.また,この水平方向地盤反力係数およびせん断地盤 反力係数の算出にあたっては、道路橋示方書を参照した.こ の2つの反力を考え,それぞれの地盤反力係数を算出し,こ れに各橋脚と地盤の接触面積をかけることで,水平地盤ばね 定数を算出した.次に地盤の質量効果のモデル化を行った. 質量効果は地表面以下にある橋脚要素の単位体積重量値を変 化させた.この場合にも橋脚基部の支持条件に,節点番号14 番を水平,鉛直,回転方向に完全拘束した場合(固定端条件) および節点番号14番に 水平,鉛直,回転ばねを挿入し, フーチング下面の地盤の影響を考慮したモデルの2通りで解 析を行った.解析結果についてはここでは割愛し,発表時に 詳細を示す.

7. おわりに

本研究では,特に,固有振動数に着目し実験結果と橋脚基 部の支持条件を変えた解析結果とを比較した.また橋脚周辺 の地盤が固有振動数に及ぼす影響を検討し,対象モデルでの より精度の良い再現性を目指した.今後は,橋梁全体のモデ ル化および固有値解析を実施し,地盤の影響を評価する必要 がある.

参考文献

 小坪 清真,高西 照彦:杭基礎-地盤系における地盤係 数の振動特性と付加質量,土木学会論文報告集,第305 号.1981.1.