基部からの逸散減衰を考慮した高架橋モデルの 振動特性に着目した研究

1. はじめに

橋梁の耐震設計や維持管理を行う段階において,地震およ び風,交通荷重など外的作用を受ける橋梁の動的応答を始め とする振動問題を数値解析手法を用いて検討しなければなら ない場合がある.そのためには,まず,対象とする構造物の 材料特性や構造特性を把握するとともに,また,構造物の固 有振動数や減衰性状を把握して,それらを正確にモデル化し 実挙動を再現する必要がある.特に実際の橋梁においては, 地盤による橋脚基部からのエネルギー逸散は避けられないこ とから,逸散減衰の影響も適切にモデル化しなければならな い.

著者らは,橋脚,上部構造,支承から成る簡易な高架橋模型を対象とした振動実験を行い,また,その挙動を動的解析 により再現することを試みている¹⁾.この実験では,橋脚基 部からの逸散減衰が生じないように,橋脚基部に溶接した 鋼板をボルトで強固に固定している.しかしながら,実際の 橋梁では,基部には地盤が存在し逸散減衰が生じると考えら れ²⁾⁻⁴⁾,この減衰が上部構造の振動に影響を及ぼすことは 避けられない.

そこで本研究では,模擬的に地盤による逸散減衰の影響を 考慮した高架橋模型を用いた振動実験とその挙動を再現する 時刻歴応答解析を行う.

振動実験にあたっては,高架橋模型橋脚部の下鋼板の下に 柔らかいシートを挿入することによって,実際的な地盤の影響の再現を試みた.一方,解析においては,各部材の構造特 性や減衰要因に加え,地盤の逸散減衰の影響をも地盤ばね, ダッシュポットとして組込んだ数値解析モデルを構築し,構 造系の固有振動数および逸散減衰による減衰特性を精度良く 再現することを試みた.

2. 実験概要

実験に用いた高架橋模型を図-1 に示し,同模型を構成す る各部材の諸元を表-1 に示す.2本の橋脚の上鋼板の上に それぞれ固定支承,可動支承を設置し,可動支承側の橋脚に は十分に剛なH型断面の鋼材を用いており,その下鋼板は M10のボルト4本で強固に固定されている.一方,固定支 承側の橋脚の下鋼板と振動台の間には,スポンジ素材の比較 的柔らかいシートを挿入することによって,逸散減衰が生じ る地盤を模擬している.以上のような特性を持つ構造系にお いて,自由振動実験および振動台による強制振動実験を行っ

図-1 高架橋模型

図-2 有限要素モデル

た.また,高架橋模型の本実験に先立って,各部材の減衰要 因を把握するため,橋脚単体,上部構造と同じ断面を有する 鋼材の片持ち柱を用いた振動実験(それぞれ部材実験1,2 とする)を行い,減衰定数を算出した.可動支承部の摩擦減 衰に関しては,動摩擦試験により動摩擦係数を得た.

高架橋模型の自由振動実験においては,橋軸方向を手動に より水平加振し,その後,自由振動中に図-1に示す位置で 橋脚基部のひずみを測定した.強制振動実験においては,振 動台を付属の制御装置で,地震波の加速度データを入力して 橋軸方向に加振し,このときの橋脚基部のひずみを測定し, また,振動台の加振方向の加速度を加速度計によって測定し た.なお,強制振動実験時において,実地震波として入力し たデータは,兵庫県南部地震時のJMA神戸記録波を調整し たものを用いた.

以上の振動実験において,各データのサンプリング周波数 は1000Hz(計測間隔0.001s),計測時間を自由振動実験の 時は16.384s,強制振動実験の時は32.768sとした.

Key Words: 逸散減衰,振動実験,動的解析,高架橋モデル 〒 321-8585 宇都宮市陽東 7-1-2 宇都宮大学工学部建設学科 Tel.028-689-6208 Fax.028-689-6208

Member	Proportion(mm)	Mass density (t/m^3)	Young's $modulus(GN/m^2)$
Top steel plate	$125.33 \times 99.47 \times 8.57$	7.832	-
Bottom steel plate	$300.25 \times 300.90 \times 8.95$	7.484	-
Flat steel bar(pier)	11.66×19.76	7.832	203.27
Flat steel bar(s.s.)	15.62×37.47	7.846	206.73
			s.s.=superstructure

表−1 Sectional property of member

表—2 Damping characteristics

Type of damping(member)	Damping parameter		
Viscous damping(pier)	Damping ratio (1st mode)	0.001001	
Viscous damping(superstructure)	Damping ratio (1st mode)	0.000902	
Friction damping(movable bearing)	Coefficient of kinetic friction	0.008734	
Radiation damping(pier base)	Rotational spring constant	$107.8 \ (kN \cdot m/rad)$	
	Rotational damping coefficient	0.490 (kNms)	

3. 解析概要

実験で用いた高架橋模型を対象に,図-2に示すように41 要素に分割し,平面骨組のための有限要素法による時刻歴 応答解析を行った.また,解析モデルの構築にあたっては, 表-1に示す諸量を組み込むとともに,同模型の構造上の特 性を考慮した.支承部分においては,支承を上沓,下沓, 基部の3つの要素に分け,図-2に示す要素番号20,37に 対応する上沓-下沓間のヒンジ部にばね要素を設定し,モデ ル化を行った.つまり,ばね要素20,37における水平方向 (橋軸方向),鉛直方向には結合条件を満たすように十分に 剛なばね定数を用い,回転方向においてはヒンジの条件を満 たすように,ばね定数をゼロとした.可動支承側の要素番号 39 とした可動部においてもばね要素を設定し,鉛直,回転方 向には剛な結合条件を満たすようなばね定数を用い,水平方 向においては可動支承の条件を満たすように,ばね定数をゼ ロとしてモデルを構築した.

一方,橋脚の平鋼部と鋼板は溶接により接合されている ことから,溶接による質量増加の影響もモデル化の際には考 慮に入れることとした.今回は,橋脚平鋼部と上鋼板におけ る溶接部のみを考慮することとし,溶接部分の質量は上鋼板 直下の平鋼部の要素(図-2の要素番号24)に含まれるもの と考えた.その他,上部構造の張り出し部分や断面の回転慣 性,幾何剛性,せん断変形の影響も考慮した.

また,模型の各部材が有する粘性減衰や摩擦減衰,逸散減 衰などの減衰要因についても適切にモデル化を行う必要があ る.高架橋模型鋼材の材料内部減衰に起因する粘性減衰は, 既往の研究¹⁾を参考にして,剛性比例型で減衰マトリックス を構成し,モデル化を行った.その際,部材実験1,2より 1次振動モードの減衰定数を算定するが,図-3に示すように 減衰定数は振幅に依存することが確認できるため,200 μ時 のひずみにおける減衰定数を代表値とし,この値に基づいて 剛性比例型の減衰マトリックスを構成した.

可動支承部における摩擦減衰については,動摩擦試験よ

図-3 ひずみと減衰定数の関係

り得られた動摩擦係数を用いて摩擦力を評価し,解析モデル に組み込んだ.このときの動摩擦試験は支承に上部構造重量 と等価な重りを載せ,振動台に5.0Hz,0.5gnの正弦波を入 力し外力を加えて得られた摩擦力から,動摩擦係数を算出し た.

さらに,図-2の節点番号35に回転方向の地盤ばねとダッシュポットを考慮し,地盤の影響を簡易に考慮することによって,基部からの逸散減衰を再現するようにした.そこで,それら減衰要因の特性値を表-2に示す.

4. 高架橋模型の実験結果と解析結果

逸散減衰を有する系の高架橋模型の自由振動実験と強制振 動実験における地盤の条件は,ボルトによる固定度を変えな い限り同様と考えるのが普通である.また,あらかじめその 特性値を把握することは困難である.したがって,解析にお いては,自由振動時と強制振動時で橋脚基部に挿入した地盤 ばねおよびダッシュポットは同じ特性値とし,それぞれの挙 動を再現した.具体的には回転方向のみを考えることとし, 橋脚基部の回転ばねのばね定数は,自由振動時において解析 モデルの固有振動数が実験値に一致するように同定した.ま

図-4 高架橋橋脚基部の自由振動波形

た,回転のダッシュポットの減衰係数は減衰自由振動曲線が 一致するように同定した.

(1) 自由振動実験

逸散減衰を有する高架橋模型を対象とした自由振動実験 (水平加振時)によって得られた,橋脚基部のひずみ波形を 図-4(上側)に示す.また,橋脚基部の回転ばねにばね定 数の同定値を考慮した解析結果も図-4(下側)に示してい る.さらに,これらの自由振動波形からひずみ振幅と振動波 数の関係を描いたものが図-5である.同図によると,回転 ばねのばね定数を同定したのにもかかわらず,実験と解析に 差異が認められる.特に16波数目を境に,両者の差が大き くなっていく傾向が伺える.また,図-4(上側)でわかる ように,実験結果では,指数関数的で,減衰が粘性的である ことがわかる.それはまた,図-5におけるひずみ振幅と振 動波数の関係がほぼ直線状であることからも確認できる.-方,解析結果では,図-4(下側)でわかるように直線的に 減衰し,図-5におけるひずみ振幅と振動波数の関係では実 験結果に比べて大きく上に凸の形状をしていることから,減 衰性状が振幅に大きく依存していることがわかる.これは, 可動支承部の摩擦の変化が影響したと推測できる.摩擦によ る減衰要因を解析モデルに考慮する際には,動摩摩擦試験よ り得られた動摩擦係数を用いたが,高架橋模型で自由振動実 験を行った際の可動支承部の摩擦特性は温度,湿度などの外 気や支承の使用履歴等で敏感に左右されてしまうと考えられ る.したがって,動摩擦試験と本実験では,動摩擦係数が変 化していることから、図-4あるいは図-5のように実験と解 析では差異が現れたと考えられる.また,解析においては, 摩擦減衰の影響を他の減衰要因に比べて,過度に評価してし まっていることも差異が現れた原因と考えられる.

そして,自由振動波形から得られるスペクトル解析結果を 図-6に示すが,実験と解析の卓越する振動数のスペクトル のピーク値は異なるものの,両者の振動数は一致している. したがって,解析モデルの固有振動数が実験結果を良好に再 現できており,固有振動数に影響を及ぼす回転ばねのばね定 数が良好に同定できていると言える.

図-5 ひずみ振幅と振動波数の関係

図-6 フーリエスペクトル解析結果

(2) 強制振動実験

自由振動実験に引き続いて,基部の固定度を変えずに強 制振動実験を行った.強制振動実験の際は,入力地震動と してJMA神戸の調整波を用いて対象模型を加振した.そ の際,橋脚基部のひずみの時刻歴応答を図-7(上側)に示 す.また,図-7(下側)には,時刻歴応答解析によって得 られた,基部のひずみの時刻歴応答を示している.この解析 では,前述の自由振動時の解析で用いた橋脚基部の回転ばね および回転ダッシュポットのばね定数および減衰係数をその まま用いているが,両者のひずみ波形はおおよそ一致してい ると言える.ただし,解析結果の方がわずかに減衰が大きい ことも確認できる.これは,動摩擦試験時と本実験時での動 摩擦係数値の相違によるものと考えられる.

また,実験と解析のひずみ応答から得られるスペクトル 解析結果を図-8 に示す.この結果から,実験と解析で卓越 する振動数は一致し,解析モデルの固有振動数が実験結果を 良好に再現している.したがって,強制振動の解析において は,自由振動時の解析で同定したばね定数および減衰係数の 値の妥当性が確認できたと言える.

図-7 強制振動時のひずみの時刻歴応答波形

図-8 フーリエスペクトル解析結果

5. おわりに

本研究では,基部に模擬的に地盤の影響を考慮した高架橋 模型を対象とした振動実験と,平面骨組のための有限要素モ デルに地盤を表すばねおよびダッシュポットを組み込んだ時 刻歴応答解析を行い,基部からの逸散減衰に着目して固有振 動数および減衰性状の再現性を検討した.主な本研究の流れ および結果を以下にまとめる.

- 基部にシートを挿入し,模擬的地盤の影響によって逸散 減衰が生じる高架橋模型の橋脚部における固有振動数を 再現するように,基部に回転ばねを考慮した解析モデル を構築した.
- 上述の解析モデルに,可動支承部の摩擦減衰,さらには 橋脚部材および上部構造部材の材料内部減衰を剛性比 例型減衰マトリックス,橋脚基部からの逸散減衰を回転 ダッシュポットとして組み込み,自由振動実験から減衰 特性を同定した高架橋模型の解析モデルを構築した.
- 自由振動時の解析において,固有振動数に関しては回転 ばねのばね定数を考慮することによって良好な同定が得 られたものの,減衰性状に関しては回転ダッシュポット を考慮しても実験結果を良好に同定することはできな

第34回土木学会関東支部技術研究発表会

かった.

- しかし、同定した地盤を表すばねおよびダッシュポット を組み込んだ高架橋模型を対象とした解析モデルが、地 震動下における強制振動実験の結果を良好に再現してい ることを確認できた。
- 5. 以上のように,強制振動時における振動波形の実験結果 と解析結果では良好な再現が得られるのに対し,自由振 動時においては減衰性状に差異が確認できた.その要因 の一つとして,摩擦減衰に関係する動摩擦係数の変化に よるものと考えられる.

参考文献

- 21) 笠松正樹,中島章典,斉木功,横川英彰:高架橋モデルの振動特性に関する実験とその有限要素法解析,第9回 地震時保有耐力法に基づく橋梁の耐震設計に関するシン ポジウム講演論文集,2006.2.
- 2) 中島章典,金丸和稔,土岐浩之:橋脚-基礎地盤系の地 震時における減衰性状について,構造工学論文集 Vol.45A, pp.763-770,1999.3.
- 3) 若原敏裕、川島一彦:剛体基礎で支持される道路橋 橋脚の地下逸散減衰,土木学会論文集,No.432/I-16, pp.145 154,1991.7.
- 4)原田隆典,山下典彦,坂梨和彦:地盤との動的相互作用 を考慮した道路橋橋脚の周期と減衰定数に関する理論 的研究,土木学会論文集,No.489/I-27,pp.227-234, 1994.4.