コンクリート円柱供試体の急速破壊実験における飛散片に関する実験的検討

防衛大学校

学生会員 学生会員 藤井 大樹 正会員 香月 原木 大輔

智

図-1

急速載荷装置の概要 図-2 供試体設置要領

図-3 破砕片計測要領 図-4 飛散片速度計測要領

表-1 コンクリート配合表

	粗骨材		水セメント比	細骨材率	単位量 (k g /m³)				7 17 24 187	20日26年
供試体名	最大寸法	오지표 (%)	W	s/a	水	セメント	細骨材	粗骨材	/口短度 (N/mm ²)	20口 59.0 G (N/mm ²)
	(mm)	()	(%)	(%)	W	С	S	G	(147.0000.)	(117/1111)
C20-G10	10	8	66.7	40.6	185	277.5	734.4	1018.6	17.8	26.9
C25-G10	10	8	57.1	40.1	185	323.8	710.7	1003.4	21.6	29.4
C30-G10	10	8	50.0	39.8	185	370.0	689.5	986.0	31.0	40.3
C40-G10	10	8	40.0	39.3	185	462.5	651.3	946.9	34.2	44.9
C20-G20	20	6	66.7	45.6	165	247.5	859.4	1004.3	15.9	21.9
C25-G20	20	6	57.1	45.1	165	288.8	835.3	994.0	21.7	32.0
C30-G20	20	6	50.0	44.8	165	330.0	813.6	981.3	30.1	36.3
C40-G20	20	6	40.0	44.3	165	412.5	774.9	951.5	45.0	51.4
C20-G25	25	5	66.7	43.6	160	240.0	829.9	1067.2	12.7	18.1
C25-G25	25	5	57.1	43.1	160	280.0	806.8	1057.0	18.3	25.6
C30-G25	25	5	50.0	42.8	160	320.0	786.2	1044.4	22.6	32.3
C40-G25	25	5	40.0	42.3	160	400.0	749.6	1014.7	34.5	44.9

ここで, v_x:水平方向の実速度, v_z:鉛直方向の実 速度, x_i :i回目にプロットした点のx座標, z_i :i回 目にプロットした点のz座標, t_i : *i*回目の時間, *n*: プロットした回数,v:破砕片の実速度, α :撮影平面 と破砕片の飛散方向がなす角度, a,b:破砕片の落下 位置.

実験結果と考察

3.1 応力~ひずみ関係および吸収エネルギー

図-5 にはケース C20-G10 の急速載荷における応力~ ひずみ関係を示す.図中の点線はひずみゲージから得 られたひずみ,実線は渦電流式変位計から得られた変 位をひずみに変換したものを示している.このように

1. 緒 言

コンクリート構造物が衝突や爆発などの衝撃荷重 を受ける場合,構造破壊に至る前段階として,表面 剥離,裏面剥離,衝突物の貫通・貫入などのコンク リート片の飛散現象をともなう破壊形態が生じる. このような破片によって構造物近辺あるいは内部に ある設備や人命の安全性を脅かす 2 次被害の可能性 もある.また衝撃荷重を受けるコンクリート構造物 の全体挙動に関する研究は多くあるが, 飛散片に着 目した研究は少ない.そこで本研究は,強度と粗骨 材寸法の異なる標準供試体の急速載荷実験を行い, 破壊によって生じた飛散片の性状や飛散速度につい て基礎的な検討を行ったものである。

実験の概要

本研究では,図-1に示すサーボ制御式急速載荷装 置を用いて, 直径 10cm, 高さ 20cm のコンクリート 円柱供試体を急速(2m/sec)で載荷し,破壊によって生 じた破砕片の飛散速度,質量,粒径を計測した.以 下に実験ケース,計測要領について述べる.

2.1 実験ケース

強度および粗骨材最大寸法の違いによる影響を検 討するため,配合のみを実験パラメータとした.水 セメント比4種類, 粗骨材最大寸法3種類, これら の組み合わせ 12 種類の供試体を作成した . 各ケース の配合およびケース名を表-1に示す.なお本実験で は各ケース3回ずつ実験を行った.

2.2 計測要領

図-2 に供試体の設置状況を示す.供試体に作用す る荷重は上下に取り付けたロードセルにより計測し た.ひずみは左右対称に上下2ヶ所,合計4ヶ所の 表面ゲージにより計測するとともに,渦電流式変位 計を用いて供試体の上下端面の変位差を計測するこ とにより,供試体の変形量を求めた.

破砕片の飛散速度は高速ビデオカメラを用いて以下 の要領で計測した.図-3 に示すように,供試体から約 2m離れた位置で破砕片の飛散を撮影した.次に,図-4 は高速ビデオカメラによって撮影された画像の一例で あるが,時間ごとに水平方向座標,鉛直方向座標をプ ロットし,画面上の速度を求める.また画面上の速度 は平面への写像であるから,実速度は次式により求め られる.

$$v_{x} = \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_{i+1} - x_{i}}{t_{i+1} - t_{i}} \right) \right\} / \cos \alpha \qquad (\cos \alpha = a / \sqrt{a^{2} + b^{2}})$$
(1)

$$v_{z} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{z_{i+1} - z_{i}}{t_{i+1} - t_{i}} \right)$$
(2)

$$v = \sqrt{v_x^2 + v_z^2} \tag{3}$$

キーワード コンクリート飛散片,急速載荷実験,飛散エネルギー ·連絡先 〒239-8686 神奈川県横須賀市走水 1-10-20 防衛大学校 TEL046-841-3810 E-mail: s515150ed.nda.ac.jp

図-9 強度と飛散速度の最大値および最頻値の関係

双方のひずみは概ね一致しており,供試体の吸収エネ ルギーを求める際には渦電流式変位計から得られたひ ずみを用いることとした.図-6,図-7には各ケースの 最大応力および吸収エネルギーを示す.図中の は急 速載荷におけるケースごとの最大応力, はその平均 は静的載荷時の最大応力の平均値を表している. 值, 図-6の最大応力は,各骨材寸法ごと,水セメント比が 小さくなると一様に最大応力が大きくなっていること がわかる.また,図-7の吸収エネルギーも水セメント 比が小さくなると,大きくなる傾向があるが,逆転し ている場合も見受けられる.

3.2 飛散速度

図-8 に骨材寸法ごとの速度分布を示す.また各ケー スの飛散速度の頻度分布と対応する対数正規分布曲線 も合わせて示す.各ケースの強度とその飛散速度の最 頻値および最大値の関係を図-9 に示す.骨材寸法ごと 比較すると、強度が大きいほど最大速度が大きくなる 傾向があることがわかる.また,飛散速度の最頻値は 1.3~2.3(m/s), 載荷速度(端面変形速度)の 2.0(m/s)程度 である.最大速度は5.3~8.9(m/s)で載荷速度の2.7~4.5 倍である.

3.3 飛散エネルギー

コンクリート供試体が吸収したエネルギーすなわち 供試体に入力されたエネルギーのうちどの程度のエネ ルギーが、破砕片の運動エネルギーに変換されたのか を求める.各ケースで計測された破砕片の有するエネ ルギーの質量平均と,破砕片全体の質量平均が同じと 仮定して,破砕片全体のエネルギーを推定した.さら に,破砕片におけるコーンについては,質量平均に与 える影響の大きさを考慮し,個別に運動エネルギーを 計算し運動エネルギーに加算することとした. すなわ ち,

$$\sum_{i=1}^{n} \frac{1}{2} m_i^2 M^2 - \frac{1}{2} M_{conf}^2 + \frac{1}{2} M_{conf}^2 m_{conf}^2$$
(4)

ここで, E:供試体全体の運動エネルギー, n:速度 を計測した破片の個数(コーンを除く), *m_i*, *v_i*: 信頼で きる速度を計測できた破片の質量とその速度(コーンを 除く), M:供試体全体の質量, M_{corn}: コーンの質量, v_{corr} :コーンの速度.

Σm

図-10 に入力エネルギーと運動エネルギーの関係に ついて示す.また全エネルギーの0.4%および4.5%ライ ンを点線で示した.これよりエネルギー変換率は0.4% ~4.5%の間に分布していることがわかる.

4. 結 言

本研究は、コンクリート円柱供試体を用いて急速破 壊実験を行い,破壊によって生じた破片の特性につい て基礎的な検討を行ったものである.以下に本研究で 得られた成果を示す。

- (1) 供試体の強度が大きくなると破砕片の最大速度 は大きくなる傾向があり,載荷速度(端面変形速度) の2.7~4.5 倍程度である.
- (2) 入力エネルギーから運動エネルギーへの変換率 は0.4%~4.5%の間に分布している.

参考文献

・田中秀明,森下政浩,伊藤孝,山口弘:爆発を受 ける鉄筋コンクリート版の損傷に及ぼす爆発位置 の影響, 土木学会論文集, No.675, V-55, pp297-312,2001.4.