溶質の土中輸送過程における有効間隙率の評価

東海大学大学院	学生会員	乙茂内	康史
東海大学工学部	正会員	本間	重雄

<u>1.はじめに</u>

土中における溶質の輸送は,有効間隙部分で移流・分散が生じており,さらに吸着性溶質においては不動水部分を 介して土粒子への吸着が生じている.そのため,粒径・実流速に応じた有効間隙率を定量的に評価することが重要で ある.本研究では,非吸着性溶質と平均粒径の異なる試料を用いて室内カラム試験を行い,累積流出間隙体積に基 づいた理論解とのフィッティングにより輸送特性および有効間隙率について評価し,得られた結果と粒径・実流速の関 係について考察する.さらに,重力排水と真空ポンプを用いた強制排水による飽和砂からの排水試験を行い,カラム 試験から求められた有効間隙率と比較した.

<u>2.実験方法</u>

実験装置は図1に示すような鉛直カラム(内径3cm,長さ50cm)と可変ポンプからなる. 鉛直カラムの上下端にはガラスビーズフィルターを設置し,内壁には水みちの発生を防止 するために豊浦砂を貼り付けた.非吸着性溶質として塩化物イオン(濃度1000mg/L),試料 には豊浦砂,山砂(粒径0.25~0.425mm,0.425~0.85mm)の3種類の砂を使用した.この カラムに試料を一定密度で充填した後,可変ポンプを用いてカラム下端より蒸留水を浸透さ せ完全飽和させた後,下端より塩化物イオンを浸透させ,上端から排出される溶液を2cc, 8ccずつに交互に採取した.2cc採取溶液から1ccを量り採り,1/100倍に希釈した状態でイ オンメーター(電気化学計器IOL-40型)を用いて濃度を測定し,元の濃度に換算した.

 V_{t}

 \mathcal{V}_{2}

Ve Vs

図 2 間隙と有効間隙

有効間隙部分

不動水部分

土粒子部分

<u>3.解析方法</u>

実験状況に対応する溶液濃度 C に関する一次元輸送方程式は次式で表される.

$$\frac{\partial C}{\partial t} = D_L \frac{\partial^2 C}{\partial x^2} - v_e \frac{\partial C}{\partial x}$$
(1)

ここに, xは流れの方向, Cは溶液濃度(mg/L), D_L は流れ方向の分散係数(cm²/s), v_e は試料の有効間隙部分における実流速(cm/s)である. (1)式を次の初期条件および境界条件のもとで解くと, その解は(2)式のようになる.

初期条件: C(x, 0) = 0

境界条件:
$$C(0,t) = C_0$$
, $C(-,t) = 0$

$$\frac{C}{C_0} = \frac{1}{2} \operatorname{erfc} \left(\frac{\sqrt{Pe}}{2} \frac{1 - V_p}{\sqrt{V_p}} \right) + \frac{1}{2} \exp \left(Pe \right) \operatorname{erfc} \left(\frac{\sqrt{Pe}}{2} \frac{1 + V_p}{\sqrt{V_p}} \right)$$
(2)

ここに, C_0 は原液濃度, P_e はカラム長Lを特性長とする動的ペクレ数 で次式で表される.

$$P_e = L/\alpha_L = v_e L/D_L$$

 V_p は累積流出間隙体積を表わし,これはカラム上端から排出される溶液の累積体積の試料間隙体積に対する割合である.しかし,実際の溶質の輸送は有効間隙部分で生じているため,**図**2に示す試料間隙体積 V_p に対する有効間隙体積 V_p の割合を S_e とすると,(2)式の V_p の変化は V_p/S_e となる.よって(2)式は(4)式のようになり,この(4)式を用いた理

キーワード:溶質移動,移流拡散,有効間隙率,カラム試験 連絡先:〒259-1292 平塚市北金目 1117 TEL 0463-58-1211 FAX 0463-50-2045 論破過曲線と実験データのフィッティングを行った.

$$\frac{C}{C_0} = \frac{1}{2} \operatorname{erfc}\left(\frac{\sqrt{Pe}}{2} \frac{1 - V_p / S_e}{\sqrt{V_p / S_e}}\right) + \frac{1}{2} \exp\left(Pe\right) \operatorname{erfc}\left(\frac{\sqrt{Pe}}{2} \frac{1 + V_p / S_e}{\sqrt{V_p / S_e}}\right)$$
(4)

有効間隙率 n_e は相対濃度 $C/C_0=0.5$ が発現するときの V_p を求め (S_e) , $n_e=nS_e$ より算出した. 分散特性である D_L と a_L は (3)式にフィッティングから得られた P_e を代入して求めた.

図3 豊浦砂に対するフィッティング結果

 D_p (cm)

0.064

0.034

0.027

 v_e (cm/s)

0.068

0.102

0.142

0.047

0.061

0.071

0.092

0.142

0.191

n e

0.34

0.33

0.32

0.37

0.36

0.37

0.38

0.37

0.36

Medium

Hill Sand #1

Hill Sand #2

Tovoura Sand

表 1 各試料のカラム試験および排水試験の結果

 α_L (cm)

0.63

0.83

0.71

0.53

0.48

0.50

0.09

0.13

0.14

 V_a (cm³)

61.65

15.80

71.38

n e(g)

0.17

0.04

0.20

 D_L (cm²/s)

0.0424

0.0850

0.1014

0.0249

0.0290

0.0354

0.0084

0.0178

0.0273

<u>4.結果および考察</u>

表1中には,各試料におけるカラ ム試験から得られた分散特性,なら びに飽和砂カラムからの重力排水に よる測定間隙率n_{e(g)}と真空ポンプ吸 引による間隙率n_{e(vp)}を示した.排水 試験より算出した間隙率は,カラム試

験より求めた有効間隙率よりも小さい値を示したが,粒径との明確な関係は 見られなかった.**図**3は豊浦砂における3種類の実流速に対するフィッティ ング結果を示す. V_p =1以降において濃度のばらつきが見られるが,これは可 動水部分から不動水部分への拡散の影響があると考えられる.**図-4**は実流 速と分散係数の関係をまとめたグラフである.実流速と分散係数の関係は, (3)式より分散長を比例定数とする直線式 $D_L=\alpha_L v_e$ で与えられる.実験結果か らも各試料それぞれにおいて直線関係が認められる.分散長は実流速を変 えても試料ごと一定の値になっていることから粒径に応じた固有の値を持っ ていると考えられ,粒径が大きくなると分散長の値も大きくなっていることが分 かる.**図-5**は実流速と有効間隙率の関係をまとめたグラフである.各試料とも 実流速の増加に伴い有効間隙率は減少する傾向が見られた.また,粒径が 大きいほど有効間隙率は小さくなっていることが示された.これは,間隙内の 流速分布の影響を受けているものと考えられる.

<u>5.まとめ</u>

<参考文献>

本研究の結果から,分散長は粒径に,有効間隙率は実流速および粒径に 依存していることが示された.今後は,吸着性溶質を用いたカラム試験を通じ て,分散特性および遅延係数 R の評価を行っていく予定である.

 $V_{\nu\nu}$ (cm³)

85.27

60.23

113.16

n e(vp)

0.24

0.17

0.32

1) Youg, Mohamed & Warkentin, 福江正治・加藤義久・小松田精吉訳, 地盤と地下水汚染の原理, 東海大学出版会.

2)中村直樹·本間重雄·近藤博,累積流出間隙体積に基づく吸着性溶質の土中輸送特性の評価法,地盤の環境·計測技術に関するシンポジウム 2004,地盤工学会関西支部,2004.

3)van Genuchten の2 Region Model 文献