塩化物イオンを考慮した鉄筋腐食メカニズムに関する解析的研究 論文

中央大学大学院 理工学研究科土木工学専攻 学生会員 〇久保 貴博 中央大学 理工学部土木工学科教授 工博 正会員 大下 英吉

1. はじめに

近年、鉄筋コンクリート構造物の早期劣化が問題とな っており、鉄筋の腐食は構造機能上および耐久性の上で 非常に重大な問題である。本来、コンクリート中の鉄筋 は不動態皮膜に覆われているため腐食から保護されてい るが、塩化物イオンなどの腐食因子の侵入により、不動 態皮膜が容易に破壊されるとともに、鉄筋腐食を誘発さ せる。特に、海岸近くの構造物では、塩化物イオンの影 響により腐食が激しくなるため、上述の問題は非常に重 要となってくる。

従来, 塩化物イオンと腐食の関係を評価した実験的研 究は数多くあるが、不動態皮膜の破壊や鉄筋腐食に対す る塩化物イオンの詳細な影響などに関しては、未解明な 部分が多い。したがって、塩化物イオンの影響やその濃 度に依存した鉄筋腐食の詳細なメカニズムもほとんど確 立されていないといっても過言ではない。現段階におい ては腐食因子として塩化物イオンのみを取り扱うことと するが、今後応力腐食まで評価可能なモデルの構築を目 的としているため、鉄筋上における各種イオンの影響を 考慮することは重要であり,環境条件による鉄筋腐食を 評価可能なモデルの構築は必要不可欠である。

本研究では、腐食部における塩化鉄(I)の加水分解か ら生成される塩酸による腐食部の pH 低下および鉄錯体 のアノード電極電位への影響に着目し分析化学ならびに 電気化学的評価を行った。

3. 鉄筋腐食モデル

不動態皮膜が破壊された鉄筋は活性態となり、鉄筋表 面上において式(1)のアノード反応,式(2),(3)のカソード 反応が起こる。

$Fe \rightarrow Fe^{2+} + 2e^{-}$	(1)
$1/2O_2 + 2H_2O + 2e^- \rightarrow 2OH^-$	(2)

$$2H^+ + 2e^- \to H_2 \tag{3}$$

なお, 塩化物イオンは不動態皮膜を局部的に破壊する ため、鉄筋表面において不均一部分が生ずる。破壊部に はアニオン透過性腐食生成物が生じ、孔食内部で Fe²⁺と Cl⁻が濃縮され¹⁾, 生成される塩酸によって酸性環境の腐 食が進行すると考えられる。したがって、カソード反応 は式(3)の水素発生型を仮定した。

2.1 塩化鉄(I)FeCl_{2(ac)}の加水分解

不動態皮膜が破壊された鉄筋は、式(1)に示したように 水中に鉄イオンFe²⁺を放出する。放出された鉄イオンは,

表-1 各化学種のΔ₊G⁰(25℃, kJmol⁻¹)²⁾

Fe	2+ (aq)	-78.9	Fe ₂ O _{3(C)}	-742.2	
Cl	(aq)	-132.2	HCl _(l)	-95.3	
($O_{2(S)}$	0	$H_2O_{(1)}$	-237.2	

侵入してくる塩化物イオンと反応することにより、可溶 性の塩化鉄(I) $FeCl_{2(aq)}$ および活発な鉄錯体を形成する³。 可溶性塩化鉄(I)の生成反応式は、式(4)で示され、生成 された塩化鉄(I)は式(5)に示すように加水分解される。 式(5), (6)中における Fe(OH)⁺Cl⁻(aa), FeOOH は反応中間 体であり、式(6)、(7)の反応が引き続き生じる。 (4)

 $Fe^{2^{+}}(aq) + 2Cl^{-}(aq) \leftrightarrow FeCl_{2(aq)}$

 $FeCl_{2(aq)} + H_2O_{(l)} \leftrightarrow Fe(OH)^+Cl^-_{(aq)} + HCl_{(l)}$ (5)

 $4Fe(OH)^+ Cl^-_{(aq)} + O_{2(S)} + 2H_2O_{(l)}$

$$\leftrightarrow 4FeOOH + 4HCl_{(l)}$$

(6)

 $2FeOOH \leftrightarrow Fe_2O_{3(C)} + H_2O_{(I)}$ (7)式(4)~(7)を組み合わせた式(8)を最終的な塩化鉄(I)の 加水分解反応とする。加水分解反応により生成される塩 酸は、腐食部のpH低下を促す。

$$Fe^{2+}{}_{(aq)} + 2Cl^{-}{}_{(aq)} + 1/4 O_{2(S)} + H_2O_{(i)}$$

$$\leftrightarrow 1/2 Fe_2O_{3(C)} + 2HCl_{(i)}$$
(8)

2.2 平衡定数

式(8)の平衡定数値は各化学種の標準生成ギブスエネ ルギーの値を用いることで算出した。平衡定数の値は、 表-1 に示した各化学種の値より K^0 =1.152×10⁻³となる。 しかしながら、この平衡定数 K⁰はイオン強度を考慮して おらず,各化学種の活量係数を1としたものである。本 研究においては、簡易化のため腐食に最も影響があると 考えられる塩化物イオン以外の活量係数は1と仮定した。 ここで、イオン強度は式(9)、活量係数は式(10)のデバイ ーヒュッケル理論を用いた。

$$I = \frac{1}{2} \sum_{i} Z_{i}^{2} \cdot C_{i}$$

$$\log \gamma_{i} = \frac{A \cdot Z_{i}^{2} \cdot \sqrt{I}}{1 + B \cdot a \cdot \sqrt{I}}$$
(9)
(10)

ここで、塩化物イオンの活量係数を考慮した平衡定数 K は式(11)で表され、塩化物イオン濃度により平衡定数 の値は変化する。

$$K = K^0 \cdot \frac{1}{\gamma_{Cl}^2} \tag{11}$$

2.3 腐食部における pH

平衡定数 K を用いることで、塩化鉄(I)の加水分解に より生成される塩酸の濃度は式(12)で表され、腐食部に

キーワード:塩化物イオン,鉄筋腐食,電極電位,鉄錯体,Tafel式 住所:東京都文京区春日1-13-27,電話:03-3817-1892, FAX:03-3817-1803

おける pH は式(13)で表される。

$$C = [HCl] = \sqrt{K \cdot \frac{[Fe^{2+}(aq)] \cdot [Cl^{-}(aq)] \cdot [O_2]^{1/4} \cdot [H_2O]}{[Fe_2O_3]^{1/2}}}$$
(12)
$$pH = -\log((C + \sqrt{C^2 + 4K_w})/2)$$
(13)

ここで、塩化物イオンと反応する鉄イオン濃度は未知 である。本研究では、生成される可溶性の塩化鉄(I)が 完全解離すると仮定し、塩化物イオン濃度に対応する濃 度を与え、酸素濃度は大気分圧値を与えた。なお、塩化 物イオンは任意の濃度を与えるとする。

3. 腐食電流, 腐食電位の算出式

3.1 ネルンストの式

式(1), (3)のアノード,カソード反応による電極電位は ネルンストの式よりそれぞれ式(14), (15)で表される。

$$E_{Fe} = E_{Fe}^{0} + 0.0295 \log a_{Fe^{2+}}$$
(14)
$$E_{H_2} = E_{H_2}^{0} - 0.059 \, pH$$
(15)

また、腐食因子の塩化物イオンは錯化剤として働くため、鉄錯体を形成する。ここで、鉄錯体の形成反応は式(16)で表される。

 $Fe^{2+} + 6Cl^- \leftrightarrow FeCl_6^{4-}$ (16)

金属錯体の生成は、金属の電極電位を低下させる⁴⁾。 ここで、鉄錯体の影響を考慮したアノード電位は式(17) 表される。なお、鉄イオン濃度に対してもpHの影響を 考慮するため、 $Fe(OH)_2$ の溶解度積 $K_{SP(Fe(OH)_2)}$ を用いるこ とで考慮する。

 $E_{Fe} = E_{Fe}^{0} + 0.0295 \log \beta_{0} + 0.0295 \log[Fe^{2+}]$ (17) $\log[Fe^{2+}] = \log K_{SP(Fe(OH)_{2})} - 2\log[OH^{-}] = 11.67 - 2pH$ $\beta_{0} = 1/1 + k_{1} \cdot [Cl^{-}] + k_{1} \cdot k_{2} \cdot [Cl^{-}]^{2}$

ここで, k₁, k₂は錆逐次生成定数であり, それぞれ logk₁=1.2, logk₂=0.4⁵を満足する値である。

本来,式(16)における錯逐次生成定数は $k_1 \sim k_6$ の6つの定数があるが,生成定数の測定が困難であることから,本研究では信頼性のある k_1 , k_2 の値を用いた。

3.2 Tafel 式

アノード反応,カソード反応による電流密度は Tafel の関係より,次式(18),(19)で表される。

$$i_a = i_a^0 \cdot \exp[\alpha_a (E - E_a)] \tag{18}$$

$$i_c = i_c^0 \cdot \exp[-\alpha_c (E - E_c)] \tag{19}$$

腐食電流密度 *i_{corr}*, 腐食電流密度 *E_{corr}* は式(18), (19)の交 点で表される。

4. 本モデルにおける計算結果

(1) アノード電位, カソード電位

任意の塩化物イオン濃度におけるアノード,カソード 電位の値を図-1 に示す。同図から,塩化物イオン濃度 が大きいほど,電位は増加していることがわかる。これ は、塩化物イオン濃度が大きいほど、図-2 に示すよう に、腐食部の pH が低下するためである。またアノード 電位において、錯体の影響を考慮した場合と未考慮の場 合では、塩化物イオン濃度が大きくなるほど差異が生じ ており、錯体の影響は無視できないと考えられる。

(2) 腐食電流密度

任意の塩化物イオン濃度における腐食電流の値を図 -3 に示す。同図から、錯体未考慮の場合は、塩化物イ オン濃度によらず、腐食電流は一定値を示している。こ れは、式(15)、(17)からわかるように、アノード、カソー ド電位は pH に対する増分が等しいため、電位差変化が 生じず腐食電流は一定の値を示す。したがって、酸性環 境下における腐食電流は pH に依存しないと考えられ、 これは実験報告に等しい⁶。しかし、錯体の影響を考慮 した場合においては、図-1 からわかるように、アノー ド、カソード電位の増分に差異が生じ、電位差は塩化物 イオン濃度が増加するにしたがって大きくなる。これに より腐食電流値は一定値を示さず増大することとなる。

5. 今後の課題

現段階においては、腐食に対する塩化物イオンの影響 として鉄錯体生成を考慮したが、塩化物イオン濃度によ る孔食電位の遷移は考慮できていないため、孔食電位に ついての評価も行う必要がある。

参考文献

- 佐藤教男:腐食反応の電気化学,金属学会会報 vol.12, pp.661-669, 1973
- 2) 日本分析化学会:分析化学便覧,改訂5版,丸善,2001
- Prof.Dr.-Ing.habil.Jochen Stark, Dipl.-Ing. Bernd Wicht: コン クリートの耐久性, ワイマール建設大学著作集-No.100, 1995
- Freiser, H.and Fernando, Q. 共著,藤永太一郎,関戸栄一 共訳 イオン平衡-分析化学における-,化学同人, 1967
- 5) H Ohmoto K-1 Hyashi Ykajisa Geochim Coso Acts
- 6) 佐藤教男:腐食防食の基礎-金属表面の電気化学(第3回) 金属学会会報 vol.20, pp.871-882, 1981