真空脱水処理工法に伴うフレッシュコンクリートの変形性状に関する実験的研究

中央大学大学院 理工学研究科土木工学専攻 学生会員 〇平川博也 中央大学 理工学部土木工学科 学生会員 中村英章 中央大学 理工学部土木工学科教授 工博 正会員 大下英吉

1. 目的

著者らはこれまで,真空脱水処理工法適用時に伴うコ ンクリートからの脱水メカニズムの構築を目的として一 連の検討を実施してきた。その結果,本工法適用時にお けるコンクリート表面での真空状態は均一ではなく脱水 口からの距離に応じて差異が生じていること¹⁾, またコン クリート内部における水分の移動がコンクリート下層部 においてはコンクリート表面に対して垂直な水分移動と なることに対して、コンクリート表層部に近づくに従い 脱水口へと向かう集約的な水分移動になっていることを 指摘している²⁾。これらの性状は、本工法による強制的な 脱水作用が,水分とコンクリート骨格との摩擦作用によ ってコンクリートに変形を生じさせるものと想定され、 その変形性状は本工法適用構造物全体において局所的に 異なることが予想される。すなわち,本工法を施したコ ンクリートの力学的特性を議論する上で、水分の移動に よる変形性状を明らかとすることが重要と考えられるわ けである。

そこで本研究は,真空脱水処理適用時におけるコン クリートの変形性状を実験的に評価するとともに,水 分移動性状との関連性について検討を行った。

2. 実験概要

2.1 供試体概要

本実験で使用した供試体は、36×36×20(cm)のコンク リートスラブであり、コンクリートの配合は表-1に示 す通りである。

2.2 実験条件

表-2 に実験条件を示す。真空脱水処理開始時期は,既 往の研究において提案されているブリージング終了後と し、本研究では 2 時間と設定した。また,脱水保持時間 は 10 分間とし,真空度[=吸引圧(MPa)/大気圧(MPa)× 100(%)]は100(%)で行った。

2.3 変形量の測定方法

図-1に変形量測定の概要図を示す。変形量の測定については、図-2に示すようにコンクリートと型枠面との剥離現象が確認されることから、図-1(a)に示すように脱水ロへと向かう平面方向の変形量を測定することとした。 変形量の評価においては、縦:10mm、横:10mm、厚さ: 1mmのアクリル板にピアノ線を接続させ、本工法適用時におけるアクリル板の移動量を変形量と定義した。なお、 アクリル板に接続するピアノ線の重量はいずれの領域を 測定する際においても同一条件としており、ピアノ線の 影響はいずれの測定点においても同様である。

表-3 に変形量の測定位置を示す。変形量の測定は真空 脱水処理表面から深度方向へ 15mm の位置で実施した。 また,同一断面内においては,図-1 (a) に示すようにコ ンクリート中心部から型枠面方向へ±30,±60,±90,

図-5 コンクリート内部の局所的なひずみ分布 ±120 および±150 の全10箇所で実施した。

3. 真空脱水処理工法に伴うコンクリートの変形性状

3.1 各測定点における変形量

図-3 に真空脱水処理適用時における各測定点での 変形量を示す。なお、変形量の評価に関しては、+方向 への縮みを正としている。

同図から、いずれの測定点においてもコンクリート の変形は縮みを生じていることが分かる。これは、真 空脱水処理による水分の移動がコンクリート表面に対 して垂直な移動ではなく、脱水ロへと向かう集約的な 水分の移動が生じていることによるものと考えられ、 既往の研究において指摘した水分移動性状と一致する 結果である。

3.2 コンクリートの経時的な変形性状

図-4 に経過時間 180, 300 および 600sec におけるコ ンクリートの変形量の分布を示す。

同図から、測定点±30mm,±60mm および±90mm においては真空脱水処理工法適用時全体を通じて上昇 傾向を維持していることに対して、測定点±120mm お よび±150mm においては真空脱水処理開始およそ5分 経過時からの変形量に変化は生じておらず、その値は ほぼ一定となっている。このことは、コンクリート表 面での真空の状態が脱水口からの距離に応じて低下し ているために、コンクリートの締め固め度合いがコン クリート中心部と比べて早く安定したためであるもの と考えられる。

3.3 コンクリートのひずみ分布

図-5 にコンクリート表面における真空状態の模式図 ならびにコンクリートの径時的な変形量分布から算出さ れるひずみ分布を示す。

同図から,脱水口近傍では圧縮ひずみは小さく,脱水 口から離れるにしたがって徐々に大きくなる。そして, マット端部近傍では圧縮ひずみは徐々に小さくなり,端 部では引張に転じている。これらの性状は,コンクリー ト表面の真空度の不均一性¹⁾および端部における未真空 領域の影響である。すなわち,脱水口近傍では上方へ向 かう水分移動が支配的となるため,ひずみは小さく,脱 水口から離れるにつれて水平方向の水分移動によりひず みは大きくなる。そして,真空度の低下および未真空領 域の影響によりひずみは小さくなり,端部では変位の境 界条件により引張ひずみとなる。なお,ひずみの絶対値 が硬化したコンクリート,例えば圧縮破壊時のひずみと 比べて大きくなっているが,これは対象がフレッシュコ ンクリートであることを考えると,その限りではない。

4. 結論

以下に本研究で得られた結果を示す。

- (1) 真空脱水処理による水分移動と変形性状には強い相 関性が見られ、コンクリート表層部における平面方 向の変形は、コンクリート全領域において縮みを生 じていることがわかった。
- (2) 真空脱水処理によるコンクリートの変形性状は、脱水口近傍においては圧縮ひずみとなることに対して、真空マット端部付近では引張ひずみを生じていることがわかった。

参考文献

- 平川博也,小野貴史,大下英吉:真空脱水処理工法に伴うコンク リート内部の水分移動性状に関する実験的研究,コンクリート工 学年次論文集, Vol.26, No.1, pp.1359-1364, 2004
- 平川博也,鈴木康介,大下英吉:真空脱水処理工法によるコンク リート中の水分移動に関する実験的研究,コンクリート工学年次 論文集, Vol.27, No.1, pp.427-432,2005