1. はじめに

ダム貯水池堆砂対策の観点,また,河川の流域一 貫した土砂管理の観点から,貯水池に流入または堆 積する土砂を下流に供給することが求められている. 下流への土砂供給方法として,流水のエネルギーを 用いる土砂輸送施設が計画・一部運用されており, 将来の展望が期待されている.しかしながら,この ような土砂輸送施設では,河床構成材料のような比 較的大きな粒径の土砂が流下する場合には,流下す る土砂による施設の摩耗・損傷が問題となる.

土砂輸送施設の損傷量を予測するには,水路底面 への流下砂礫の衝突エネルギーと,そのエネルギー が作用した時の施設構成材料の損傷量との関係(損 傷特性)を把握する必要がある.

損傷特性については、施設構成材料として普通コ ンクリートを対象に、ステンレス球等を衝突させて 損傷量を計測する損傷実験が行われており、砂礫の 供試体面への衝突角度が 90°の場合、1 回の衝突に よるコンクリート損傷量 *ΔV* は次式で表すことがで きる¹⁾²⁾.

$\Delta V = a \Delta E - b$	в	(1)	
$\Delta v - a \Delta L - l$	9	(1)	

$E = 0.5m v_1^2 (1 - e^2) \tag{2}$)
$1 0.5 m v_1 (1 c)$ (2	

ここに,a,b:定数, ΔE :衝突エネルギー,m:衝 突粒子の質量, v_1 :衝突直前の粒子の速度,e:反発 係数である.

しかし,既往の損傷実験では,供試体面の1箇所 ないし比較的狭い範囲を損傷させており,実際の水 路の損傷状況から判断すると損傷面積は充分広いと はいえず,限定的な知見と考えられる.本稿では損 傷面積を変化させた条件で損傷実験を行い,損傷特 性を調査した. 独立行政法人 土木研究所 正会員 〇井上 清敬独立行政法人 土木研究所 正会員 柏井 条介

2. 実験方法

損傷実験は, コンク リート供試体にステン レス製の球を1球ずつ 繰り返し落下・衝突さ せて,供試体表面を損 傷させる実験である. 損傷装置を図1に示す.

実験条件を表に示す.球の落下は Casel では同一 地点で行う.一方, Case2~4 は落下地点を随時動か して均等に面的に落下させる.落下は表に示す大き さの格子の頂点で行うものとし,1回落下させる毎に 落下点を移動させる.落下させる頂点の順番設定は, 頂点を 8×8 個毎に区画し,各区画内で Case2 ではラ ンダム数を発生させて,Case3,4 では近傍頂点の落 下が連続しないよう決めており,各区画に順次1回 ずつ落下させる.全頂点から各1回の一様落下終了 後,格子の基準位置をずらし,再び全頂点に一様に 落下させる操作を繰り返し,最終的に落下点の間隔 が2.5mm 程度まで小さくなるようにしている.なお, 損傷実験は材齢90日付近で実施している.

損傷量は、レーザー変位計(1/10mm 精度)を用い て損傷面の縦横断面の損傷深さを 1mm 間隔で計測 する.計測は、球の落下を一時停止して、各ケース5 ~15回程度、縦横に10測線程度ずつ実施する.損傷 量の評価は、断面形状を積分して得られる損傷体積 により行う.

3. 実験結果

損傷状況例を写真に、レーザー変位計で計測した 断面形状例を図2に示す.当然のことながら、Case1

表 実験条件

	落下条件					供試体条件									
Case	落下球	落差	落下範囲	格子サイズ	落下点 (格子頂点)	落下回数	1点当た の落下	供試体	粗骨材 最大寸法	水セメ ント比	細骨材 率	スランプ	<u> </u>		
1	フテンリンフ球		1点	-	1	600	600	0.5m × 0.5m	20	66 5	46.0	75	15.6	20.4	25.6
2	内 の し の し の し の し の し の し の し の し の の の の の の の の の の の の の	1.m	128mm × 128mm	8mm × 8mm	256	5120	20	× 0.5m	20	00.5	40.0	7.5	15.0	30.4	33.0
3	- 直径:63.5mm		400mm × 400mm	10mm × 10mm	1600	19200	12	0.9m × 0.9m	20	66 5	45.7	75	10 1	20.2	24.5
4		720mm × 720mm		5184	51840	10	× 0.5m	20	00.5	43.7	7.5	10.1	20.2	54.5	

キーワード:損傷,衝突,衝撃,普通コンクリート,堆砂対策

連絡先:〒305-8516茨城県つくば市南原 1-6 (独)土木研究所 水工研究 パープ TEL029-879-0867 E-mail:k-inoue@pwri.go.jp

ではお椀型に損傷しているのに対して, Case3, 4 で は細かな凹凸はあるものの, 広範囲に面的に損傷し ている様子が分かる.

損傷体積と衝突回数の関係を示す(図3).いずれ のケースも損傷の初期を除くと,衝突回数と損傷体 積には線形性がある.そこで,ケース毎に損傷初期 を除いて線形近似を行い,衝突1回当たりの損傷体 積*ΔV*を求め,損傷面積との関係を描く(図4).Casel の損傷量は既往の実験結果と同程度であるが,損傷

面が広範囲になるにしたがい,衝突1回当た りの損傷体積 ΔV が大きくなり, Case4 の ΔV は Case1 の約3 倍を示す.

これには、2 つの原因が考えられる.1 つ 目は衝撃エネルギーの作用面にある.損傷の 初期または損傷面が平面に近い場合は、衝撃 エネルギーは点に近い形で作用する.一方, Caselのように、損傷が進行して局所的に掘 れた場合は、衝撃エネルギーが面で作用し、 単位面積当たりの作用エネルギーが小さく なる.2 つ目は損傷範囲端部の効果である.

広範囲が損傷している場合も、端部では衝撃 エネルギーが面に直角に作用しない.また、この端 部の効果は損傷範囲が小さい程,幾何学的に損傷体 積に影響しやすい.これらの効果により,損傷特性 が変化すると考えられる.

以上の結果から,損傷量を正確に予測するには, 損傷面積に応じた損傷特性を適用する必要があると いえる.

4. 考察

文献 3)では、実際の土砂輸送施設において、Casel 程度の損傷特性を用いて損傷体積を試算した結果が、 実測値と同程度であることが示されている.この結 果は、水路幅方向に一様な土砂流と損傷を仮定して いるが、実際の損傷状況は、施設形状や水路線形に より局所的な深掘れを生じている場合もある.

したがって,実際に生じる損傷面の大きさ(水路 横断方向の幅)や,損傷状況に応じた水路底面への 衝撃エネルギーを調査するとともに,本稿で示した 損傷面積に応じた損傷特性の調査を進め,適用する ことが精度の良い損傷量,局所洗掘量の予測に必要 と考える.

参考文献

- 1) 柏井, 塚原, 高橋: 衝撃によるコンクリート損傷に関 する基礎的検討, ダム技術, No.167, pp.55-62, 2000
- 2) Toyoda, T. and Takasu, S.: Erosion control for sediment flushing facilities, 17th ICOLD, Q.65-R.20, Vienna, 1991
- 3) 石橋:ダム排砂設備の流下砂礫による摩耗・損傷に 関する水理学的研究,土木学会論文報告集,第 344, 1983