模型水路を用いた土砂流下実験における損失エネルギー算出方法の検討

中央大学理工学部 正会員 國生 剛治 原 忠 学生会員 〇机 慶人 吉川 陽

1.研究背景

わが国では毎年集中豪雨や台風に伴う強雨によって土石流が発生 しており、これらの土砂災害の予知・予測は難しく、地形条件や気 象条件からも高い頻度で大きな人的被害を及ぼしてきた.従来、土 石流は一見流体に近い挙動を示すため、流体力学的に扱われること が多かった.しかし、一方で粒状体としての性質も適切な土砂管理 や流出土砂の実態を把握するために重要であると考えられる.本研 究では土石流の粒状体的側面に主に着目し、土石流発生渓流におけ るエネルギーバランスの解明によって流出土砂の挙動を把握するこ とを目的としている.

2.固定床模型水路を用いた土砂流下実験の方法および実験条件

2.1.実験方法

実験には勾配を =20°に固定し,表面を防水ペイントした幅120 mm,高さ200mmの木製の矩形固定床水路(図-1)を用い,実験材料 としては利根川砂を使用した.水路下流端から流出した土砂の質量 を自動計測するために設置した電子天秤の最大容量は40kg,サンプ リング速度は50Hzである.また水路出口部から自由落下する土砂の 落下軌跡を側方から1秒間に30コマの速さで測定することにより, 水路下流端通過時の土砂の流速の時刻歴を同時に測定した.

2.2.実験条件

土砂量 10kg,流下距離 2800mm とし,本実験の再現性の確認,W/S の違いによる損失エネルギーの比較検討, さらには細粒分含有率を 0,5,10%と変化させた試料を用いての損失エネルギーの比較検討を行った.実験材料 として用いた利根川砂礫の粒径加積曲線をそれぞれ図-2 に示し,また実験条件の詳細を表-1 に示す.

3.損失エネルギーの算出方法

土砂の水路内損失エネルギー E_L は式(1)のように初期位置エネルギ ー M_gH [J]から土砂流下後の水路内に堆積した砂の残存位置エネル ギー $m_{lj}gh_j$ [J]および水路下流端から流出した土砂の運動エネルギ ー $m_2(t_i)v_0^2(t_i)/2$ [J]の差として求められる.ここで式(1)中の記号の 詳細を表-2 に示す.

土砂の流速 $v_0(t_i)$ を水路側面から撮影した画像から算出する計算方法は式(2)の通りである.すなわち水路下流端から放出される土砂が,そこから z (=100mm 一定)だけ下方の位置を通過する時の水平距離 $x(t_i)$ を計測することにより,任意の時間 t_i における土砂の流出速度 $v_0(t_i)$ を連続的に計算する.このように t_i ごとに電子天秤で測

キーワード 土石流,エネルギー,模型水路実験

連絡先 〒112-8551 文京区春日 1-13-27 中央大学理工学部土木工学科 Tel 03-3817-1799

	M[kg]	L[mm]	W/S	Uc	Uc'	$D_{50}[\text{mm}]$	Fc[%]	θ[deg]
case1-1-1	10	2800	0.5	4.26	1.01	1.84	0.0	20
case1-2-1	10	2800	0.35	4.26	1.01	1.84	0.0	20
case1-3-1	10	2800	1.0	4.26	1.01	1.84	0.0	20
case2-1-1	10	2800	0.5	12.22	0.61	1.24	0.0	20
case2-2-1	10	2800	0.35	12.22	0.61	1.24	0.0	20
case2-1-2	10	2800	0.5	15.45	0.66	1.12	5.0	20
case2-2-2	10	2800	0.35	15.45	0.66	1.12	5.0	20
case2-1-3	10	2800	0.5	22.48	0.78	0.99	10.0	20
case2-2-3	10	2800	0.35	22.48	0.78	0.99	10.0	20

長 2 式中記号の詳細

EL	[J]	損失エネルギー					
М	[kg]	全質量(土砂+水)					
Н	[m]	土砂流下前の平均高さ					
m_{1j}	[kg]	水路上堆砂土砂質量					
hj	[m]	水路上堆砂土砂の平均高さ					
$m_2(t_i)$	[kg]	水路より流出した土砂質量					
$v_0(t_i)$	[m/sec]	流出土砂の流速					

定した流出土砂質量 $m_2(t_i)$, さらに式(2)で計算した $v_0(t_i)$ の t=1/30 秒ごとの値, また水路小区間(20cm)ごとに測定した残存質量 m_{Ij} を用いて,式(1)から損失エネルギー E_L を算定する.ただし土砂の流出速度 $v_0(t_i)$ と流出土砂質 量 $m_2(t_i)$ の間に生ずるわずかな時間差は無視している.

$$E_{L} = MgH - \left\{ \sum_{j} m_{1j}gh_{j} + \frac{1}{2}\sum_{i} m_{2}(t_{i})v_{0}^{2}(t_{i}) \right\} \dots (1)$$

4.結果と考察

本実験における再現性を確認するために case1-1-1,1-2-1の 条件下で各ケース2回ずつ(A,B)実験を行った. 損失エネルギー*E*L および運動エネルギー,残存位置エネルギ ーそれぞれの割合を図-3に示す.

これより水土比 W/S が 0.5,0.35 両ケース ともに,各エネルギーの割合はほぼ同じとな り,本実験の再現性は良いと考えられる.

流速の時間変化の測定例をそれぞれ図-4 に示すが実験ケースごとにかなり類似した 時間変化を示しており,今回用いた測定法に 信頼性があると考えられる.さらに詳細に見 ると,流速については,W/S=0.5の方が W/S=0.35 より初期段階での流速が明らかに 大きいことがわかる.また,細粒分含有率F_c が多いほど土砂の流出時間が多少長い傾向 が見られる.

一方,流出土砂質量の時間変化を図-5に示
図 5
すが,W/S=0.5の方がW/S=0.35より初期の流
出質量が明らかに大きい.また細粒分含有率 F_cの影響に
ついては,流出開始からほぼ同じ割合で土砂が流出し,
最終的に流出した量についてもほとんど差が無いことが
わかる.また,細粒分含有率 F_cが 10%で水土比 W/S が
0.35の case2-2-3 については土砂がほとんど流下しなかった.

図-6 は W/S=0.5 と 0.35 の条件で F_c=0,5,10%に変化さ せたケースを比較しているが,水土比 W/S が小さいほうが 損失エネルギーの割合が大きくなることがわかる.また, 水土比 W/S が同じケースで比較すると,細粒分含有率 F_c が 多くなるほど多少損失エネルギーの割合が増える傾向が見 られる.

$$v_0(t_i) = \sqrt{\frac{g}{z(1+\cos 2\theta) - x\sin 2\theta}} x(t_i) \qquad \dots (2)$$

図 5 累積土砂流出質量の時刻歴(W/S=0.5,0.35)

図-7 は,細粒分を含まない均等係数が U_c'=4 程度の粗砂について,W/S を 1.0~0.35 に変化させた場合のエネル ギーを示す.図-4 からも分かるように水土比 W/S の大きい方が流出土砂の流速が大きく,運動エネルギーの割合 が大きくなり,損失エネルギーが小さい値を示す傾向が見られた.

5.まとめ

最も損失エネルギーの割合に寄与するものは水土比 W/S であり, W/S の値が大きいほど損失エネルギーの割合 は小さくなる傾向が見られた.また,細粒分含有率が大きいほど損失エネルギーの割合が多少大きくなる傾向が 見られた.