P₁₀ P₁₁

地震による橋梁落橋に対する軟弱粘性土層の影響

P. P.

1.はじめに

本研究では1964年の新潟地震で5径間の落橋に至った 昭和大橋の落橋原因を考察する。この落橋範囲の地盤に はN値が極小値を示す軟弱粘性土層(以下、軟弱層)が存在 し、地震時にこの層を境目として上層地盤の移動が比較 的大きく生じ落橋したと推測されている¹⁾。この軟弱層に 着目し地震応答解析を行い、この推測を確かめる。

2.昭和大橋の構造および被害の概要

(1)構造と地盤の概要

昭和大橋は橋長 303.9m、幅員 24.0m、上部構造は活荷重 合成鋼単ゲタ橋であり、下部構造においては径 600mm、杭 長25mの鋼杭9本1列に用いた鋼管杭基礎の橋梁である 2)。昭和大橋は図 1^{1)、2)、3)}に示すように牡丹山砂丘(右岸側) と河成層(左岸側~右岸側、Um 層あるいは Um~Us 層)に跨 って作られている。その河成層は橋脚 P7 付近を境にして 右岸側は砂質土のみからなり、左岸側は中間部にN値が0 に近い極小値を示すA点、B点、及びC点付近の軟弱層を 挟んでいる。また、その軟弱層のある範囲のみで落下した ことも分かる^{1)、3)}。

(2)被害機構の推定

地震後の調査より、図 1 に示すように右岸方向に P₄橋 脚鋼管杭の永久変形²⁾が確認されている。よって地震時に この軟弱層を滑り面として、その上の厚い河成層が右岸 方向へ動き落橋が生じたと推測できる^{1)、3)}。この時、右岸 側の橋脚 P6~P10 の範囲にある軟弱層が含まれていない河 成層と橋脚P10~右岸側橋台ARの範囲にある浅い埋没砂丘 がともに固くて不動点のようになってあまり動かず、両 地盤間に短縮側の不同変位が大きく生じて、その境界部 の前後にある橋脚 P5と P6の杭間隔が狭くなり、落橋範囲 が限定されたと考えられる^{1)、3)}。このような地盤の不同変 位が橋脚間隔の変化を起こしたのは、河成層の圧縮性が 比較的小さくかつ地盤反力係数が比較的大きいためと考 えられている 2)、4)、5)。

3. 地震応答解析

(1)地震応答解析の方法

P₃ P₄

Ps. P₆ P₇

図2入力波形(川岸町アパート、EW 成分)⁶⁾

表1 物性値(土層)(文献6の修正値)

材料 番号	土質名	単位体積重量 (tf/m ³)	初期せん断 弾性係数(tf/m ²)	ポ ア ソン比
	左岸盛土(砂)	1.8	4,100	0.49
	右岸表土(砂)	1.8	4,100	0.49
	軟弱層(粘土)	1.3	110	0.49
	Um 層(粘土)	1.7	4500	0.49
	Us 層(砂)	1.95	6500	0.49
	Us 層(砂)	1.95	13000	0.49
	Ls,Lm層(砂)	2.0	15000	0.49

物性値(ビーム要素)(文献 7) 売り

材料 番号	部材名	単位体積 重量 (tf/m ³)	せん断弾性 係数(tf/m ²)	断面積 (m ²)	断面二次 モーメント(m⁴)	ቱ" ምሃንይይ		
梁	橋台	2.5	1.04×10^{6}	54.0	22.781	0.15		
梁	橋脚	7.8	8.1×10^{6}	2.63	0.014	0.3		
梁	主径間	7.8	8.1×10^{6}	4.79	0.232	0.3		
梁	側径間	7.8	8.1×10^{6}	4.66	0.149	0.3		
梁	上部水 平材	2.5	1.04×10^{6}	31.2	4.394	0.15		
梁	下部水 平材	2.5	1.04×10^{6}	24.0	2.0	0.15		

本研究では地震応答解析に 「micro FLUSH」を使用する。図 2⁶⁾ に示した入力地震波は、新潟市の 川岸町アパートで実測された加速度 波形 EW 成分を川岸町の地盤モデ ルを想定し、基盤に戻した波形と して求めたものである。解析モデル の地盤物性及び部材物性は文献 6)、7)を参考にして定めた。 (2)昭和大橋と地盤のモデル化

桁の落橋範囲の地盤には A、B、

及び C 点の極軟弱層が存在しているが、中でも最も深く 落橋範囲の中心に位置する C 点を基準にその存在範囲を 落橋範囲の5径間として、図3のようにモデル化を行った。 なお軟弱層の厚さはボーリッグ調査結果⁶より 0.65m とし、 橋梁の固定沓・可動沓のモデル化については固定沓をヒンジ、 可動沓をフリーとした。比較のための軟弱層無しモデル(図3の

無しモデルと計2個のモデルを作成し解析を行った。 (3)解析結果

図 4 は解析より得られた橋脚上の固定沓(橋脚頭)と可 動沓(橋桁)の間に発生する接近側の最大変位差を示した ものである。ここで沓が両自由端で構成される P₆橋脚上 においては桁同士の変位量を示しているが、この部分で は他地点に比べ変位差が最大値を示している。軟弱層の 有無に着目すると軟弱層の有りの時にその値が大きくな っている。さらに図 3 に記入した P。橋脚上の両自由端沓 の最接近時の橋脚変形図を見ると P5、P6 を境に左岸側の み変形が生じ、P7より左側に不動点の作用が見られ、これ は前述の被害機構の推定と一致すると言える。また、図 4 上部に示した橋脚頭部の変位波形図からは、P₂付近橋脚 が大きく変形しているのが見られる。これは地盤面から 上部の杭長の差による橋脚の周期変化によるものと考え られるが、この面を境界として軟弱層が現れる、所謂地盤 構造の変化点であることも原因の 1 つと考えられる。最 後に図5に永久変形が残った P4橋脚の左隣要素のせん断 ひずみを示した。軟弱層有りモデルでは軟弱層の存在位置 である 31m~32m でせん断ひずみが極値を示しており、軟 弱層が地盤のすべりを誘発させたことが推察できる。 4.まとめ

土質柱状図より確認できる軟弱層に着目し地震応答解 析を行ったところ、軟弱層の存在により落橋範囲地盤の 桁間隔に比較的大きい相違を生じさせ、また両側が自由

図5 P₄橋脚付近のせん断ひずみ

端で構成される P₆橋脚上でその変位差が最も大きい結果 となった。本橋は実際の目撃談²⁾によると地震後5分後に 落橋し始めたと言われているが、軟弱層の局所的な存在 により、地震時に上記の解析結果のような現象が発生し、 落橋に大きく影響したことも推定される。終わりに解析 にあたって参考にさせて頂いた文献の著者に厚く御礼を 申し上げます。

参考文献

- 1)那須 誠:地震による被害構造物と無被害構造物の地盤の違い,
- 員会編,(社)土木学会,1966.6.
- 3) 那須 誠: 地震被害形態と地盤形状および土質構成の関係, 鉄道 総研報告, Vol.8, No.5, pp.35-40, 1994.5. 4)那須 誠:阪神·淡路大震災による高速道路橋梁の被害と地盤の
- 関係、第6回耐震補強・補修、耐震診断に関するシンポジウム講演論 文集,pp.73-80,2002.7.
- 5)那須 誠:地震被害への地盤の影響と被害機構の推定(その3,建物 と橋梁),前橋工科大学研究紀要,pp.19-21,2000.3
- の建設省土木研究所編:昭和大橋における地盤及び下部構造の耐 電性調査,土研資料,第1591号, pp.35-40,1980.7. 7)近藤益央:地盤の液状化を考慮した昭和大橋の地震応答解析土
- 木学会年次学術講演会講演概要集第 3 部, Vol.37, pp.59-60, 1982.