足利工業大学工学部	学生会員	谷	晋 佑
足利工業大学工学部	正 会 員	黒井	登起雄

足利工業大学工学部 正会員 松村 仁夫

1. まえがき

コア供試体の圧縮強度試験を行う際,高さが小さい供試体の圧縮強度は,強度が大きくなるとともに,ばら つきも大きくなる。主な原因は,試験機の加圧板と供試体端部面との摩擦抵抗力が供試体の中心に向かって半 径方向に作用し,供試体端部付近の横(円周)方向変形を拘束するためと考えられる。そこで,本研究では, 高強度および普通強度領域のコンクリートの高さ方向における加圧板拘束の影響を円周方向ひずみの測定に よって実験的に明らかにした。

2. 実験概要

2.1 使用材料および配合

セメントは,普通ポルトランドセメント を使用した。細骨材は粒度の良い川砂(鬼 怒川産,密度;2.62g/cm³,吸水率;2.16%) を使用した。粗骨材は,良質の硬質砂岩の 砕石(葛生産,最大寸法;13mm,密度; 2.63g/cm³,吸水率;1.13%)を使用した。混 和剤はAE減水剤および,高性能AE減水 剤を使用した。また,空気量の調整として, AE 助剤(AE剤,空気連行剤)を用いた。コ ンクリートの配合は表-1に示す。W/C=30, 40 および60%(スランプ=10±1cm,空気量 =5±1%)とした。

2.2 実験方法

コンクリートの練混ぜは,容器 100ℓのパン型強制練ミキサで行い,コ ンクリートの練混ぜ直後に円柱型枠(100×200mm)に各水準の高さまで 打込みをした。28日間の水中養生したのち、試験材齢の35日まで気中養 生とした。各供試体は,材齢14日以降の水中養生期間中に供試体高さの 許容範囲が±1mm程度なるように,上下両端面をコンクリート研磨機で研 磨し,所定の高さに成形した。ひずみゲージ(ゲージ長;30mm)は,28日 以降の気中養生期間中に貼付けた。ひずみゲージの貼付方法はJISA1149 「コンクリートの静弾性係数試験方法」に基づいて行った。貼付位置の一 例を図-1に示す。図-1は,h/D=2.0が場合のひずみゲージの貼付位置であ

図-1 ひずみゲージの貼付位置

る。すべての供試体の縦(軸)方向の中心に各2枚,円周方向に各水準に決めたひずみゲージ枚数を等間隔で 貼付た。供試体の圧縮強度試験および縦,横(円周)方向ひずみ測定は,材齢35日で行った。

3. 実験結果および考察

図-2および図-3は,高強度領域(W/C=30%)における応力と縦方向ひずみおよび供試体中心における横(円

キーワード 高強度コンクリート 圧縮強度 摩擦抵抗力 弾性係数 ポアソン比

連絡先 〒326-8558 栃木県足利市大前町 268-1 TEL 0284-62-0609 FAX 0284-64-1061

表-1 コンクリートの示方配合

W/C(%)	s/a(%)	単 位 量(kg/m ³)				
		W	С	S	G	$^{1}Ad_{WR}$
30	42	181	605	638	887	4.235
40	46.2	179	448	762	887	1.344
60	46.2	175	292	826	962	1.022
¹ W/C=30%の場合は高性能 AE 減水剤						

表-2 実験要因および水準

亜田	水セメント比	30%, 40%, 60%		
安凶	粗骨材の最大寸法	13mm		
水淮	供試体の直径 D	100mm		
小牛	供試体の高さ h	D× 1.0 , 1.4 , 1.6 , 1.8 , 2.0 (mm)		

周)方向ひずみの関係を示す。図-2 および図-3 より,h/D=2.0 ~1.6 の応力-ひずみ曲線は,ほぼ比例関係になっているが, h/D=1.4~1.0 の応力-ひずみ曲線は,応力の増加とともに変形速 度が異なり,弾性的な挙動を示していない。図-4 および図-5 は,普通強度領域(W/C=40%)における応力と縦方向ひずみお よび供試体中心における横(円周)方向ひずみの関係を示す。 図-4 および図-5 より,h/D=2.0~1.6 の応力-ひずみ曲線は,ほ ぼ比例関係になっているのに対し,縦方向ひずみの場合, h/D=1.0 と 1.4,横(円周)方向ひずみの場合,h/D=1.0 の応力-ひずみ曲線は,弾性的な挙動を示していない。以上のように, h/D=1.0,1.4 の供試体では,供試体中心付近で,供試体端部付 近の加圧板拘束の影響を受け,応力とひずみの関係が不安定に なることに起因していると考えられる。また,W/C=30%と W/C=40%の比較も,明らかな違いは見られなかった。

図-6,は高強度領域(W/C=30%)における円周方向ひずみの高 さ方向分布を示す。図-6より,h/D=2.0~1.4の供試体の場合, 横(円周)方向ひずみの分布は,供試体の高さ方向の中央部分 に一定区間の等ひずみ領域が認められる。しかし,h/D=1.0の 供試体の場合,横(円周)方向ひずみの分布は,供試体の高さ 方向において大きく変動が見受けられ,加圧板拘束の影響が認 められる。

これらのことから,高強度領域および普通強度領域に限らず h/Dの小さい供試体(=1.4~1.0)は,試験時に加圧板拘束の影 響を受け,圧縮強度のばらつきの原因となっていると考えられる。

4. まとめ

高強度および普通強度領域のコンクリートの高さ方向における加圧板拘束の影響を実験的に検討した結果, h/D=1.4以下の供試体で圧縮強度試験時,供試体端部付近の横(円周)方向変形を拘束する力が大きいことが 認められた。今後は,高強度領域を重点的に横(円周)方向変形の拘束を検討していく必要がある。

