マイクロ波強制加熱後にサーモグラフィ法により検出される温度分布と コンクリート中の内部欠陥深さとの関係

東京理科大学大学院	学生員	米田	奈緒	東京理科大学	正会員	辻	正哲
東京理科大学	正会員	澤本	武博	東京理科大学大学院	学生員	小林	祐紀
京橋工業(株)	正会員	並木	宏徳	神戸大学	正会員	竹野	裕正

1.はじめに

コンクリート構造物に対する非破壊検査において、 非接触で大面積の測定が可能なサーモグラフィ法は注 目されている分野であり、数多くの研究がなされ実用 化されている。しかし、パッシブ法に比べ比較的気象 条件の影響が小さいアクティブ加熱方法においては、 加熱に多くの時間を要すること等の問題点を依然とし て抱えている。著者らは、サーモグラフィ法のアクテ ィブ加熱方法として、電子レンジなどで用いられてい るマイクロ波照射による加熱方法の適用について検討 してきた¹⁾。しかし、コンクリート中の内部欠陥深さと 検出される温度分布との関係を明らかにできるまでに は至っていない。

本研究では、マイクロ波の照射時間が、コンクリー トの内部欠陥深さと検出される温度分布との関係に及 ぼす影響について検討した。

2.実験概要

実験では、水セメント比 50%の一般的なコンクリー トを用い、欠陥のない健全供試体と内部欠陥探査用供 試体を作製した。供試体寸法は300×900×100mmであり、 内部欠陥は断面が50×50mmで厚さが20mmの空洞とし、 欠陥深さは10,20,30,40,50mmの5種類とした。空洞は 発泡スチロールをコンクリート中に埋め込み、コンク リート硬化後にアセトンを用いて溶解洗浄して作製し た。加熱方法としては、供試体表面と導波管との間隔 (照射距離)を 60mm に固定し、導波管とコンクリー トの相対速度を15,30,60,90,120,150cm/minの6段階に変 化させた。また、照射回数は全ての照射速度において1 回、2回、3回の3段階とした。そして、加熱終了後、 赤外線サーモトレーサーを用いて供試体表面の温度分 布を測定した。なお、照射したマイクロ波は、周波数 2.45GHz・空気中での波長 120mm・強度 1.0kW である。 また、サーモトレーサーの温度解像度は 0.3 とした。 3.実験結果

3.1 想定した欠陥検出のメカニズム

マイクロ波加熱による欠陥検出では、欠陥部が高温 として検出されるだけでなく、低温として検出される 場合がある。これは、マイクロ波による加熱箇所は、 コンクリート表面だけでなく、表面から内部に数十ミ リ入ったところでもかなりの加熱作用を発揮している という特徴から生じている可能性が高い¹⁾。欠陥部上が 高温となる場合と低温となる場合の違いから、加熱に より生じたコンクリート表面の最高温と欠陥深さ関係 には何がしかの関係が生じるものと考えられる¹⁾。

なお、コンクリート表面から内部へ 10~15mm 入っ た所までマイクロ波が十分な加熱エネルギーを有して いることが確認されているため¹⁾、今回の実験では欠陥 深さを 10~50mm の範囲とした。そのため、全て欠陥 部上の方が健全部上より高温として検出された。

3.2 欠陥部と健全部上における表面温度差

図-1 は、欠陥部の判定容易なもの、判定可能なもの、 判定不可能なものの代表例を示したものである。なお、 画像は全て欠陥深さ 50mm のものである。

表-1 は、欠陥部上と健全部上における温度差の測定 結果を示したものである。この表では、照射速度、照 射回数によって、判別可能な欠陥深さが変化するのを とりまとめたもので、判別可能であった箇所に着色し ている。照射速度が遅いほど、1回の照射で深いところ までの欠陥検出が可能であり、また、健全部との判別 が可能な照射後の放置時間が長くなった。逆に、照射 速度が速ければ、1回の照射では浅い欠陥部のみしか欠 陥検出できず、深い欠陥部の検出には数回の照射を必

キーワード 非破壊検査 コンクリート サーモグラフィ 内部欠陥 マイクロ波 連絡先 〒278-8510 千葉県野田市山崎 2641 TEL04-7124-1501(内線 4054) E-mail:saori@rs.noda.tus.ac.jp 要とするうえ、検出可能な放置時間も短くなるという 傾向があった。

換言すると、以上の結果は、一回の照射では、照射 速度を 150cm/min と速くすると、容易に検出できる欠 陥深さは 20mm 以下であり、照射速度を遅くする程検 出できる深さは深くなり、照射速度を 30cm/min とする と 50mm 以上の深さまで欠陥を検出できることを表し ている。しかし、照射回数を増す場合も、照射速度を 遅くする場合と同様の傾向を示すものの、照射を繰り 返す過程での何らかの原因で、照射速度を変化させた 場合よりも、欠陥深さの推定精度は低下するようであ った。

4.まとめ

照射速度、照射回数の変化により、検出可能な欠陥 深さが異なることを確認できた。これらを利用するこ とで、深さごとに順を追った欠陥検出ができることが 期待できる。また、その際は、照射回数を変化させる よりも照射速度あるいはマイクロ波の照射する強度を 変化させる方が適していると推定された。

謝辞

本研究に際し、多くの実験を実施した京橋工業(株) の大野一樹他関係者各位に感謝の意を表します。

参考文献

 1) 辻 正哲ら:マイクロ波強制加熱を用いた赤外線サ ーモグラフィ法によるコンクリート中の欠陥・鉄筋探 査に関する研究、コンクリート構造物の補修,補強,ア ップグレード論文報告集、第4巻、pp.309-316

表-1 照射後の欠陥部上と健全部上における温度差 に及ぼすマイクロ波の照射速度の影響

()1回照射直後に測定した場合

	· · ·				
欠陥深さ	10(mm)	20(mm)	30(mm)	40(mm)	50(mm)
	2.0	0.8	1.0	0.2	0.0
SUCHI/IIIII	2.0	0.8	1.2	0.2	0.9
	1.0	0.4	0.8	0.0	0.3
90cm/min	1.0	0.4	0.5	0.2	
120cm/min	0.6	0.3	0.3	0.2	0.0
150cm/min	0.7	0.5 四时古後1	0.2 - 測定した	<u>0.2</u>	
	()2凹	忠 別且仮は	- 測走した	场百	
欠陥深さ 照射速度	10(mm)	20(mm)	30(mm)	40(mm)	50(mm)
30cm/min	2.1	2.1	1.4	0.3	1.3
60cm/min	1.6	0.4	0.8	0.6	0.3
90cm/min	1.5	0.7	0.8	0.2	
120cm/min	1.1	0.6	0.3	0.4	0.2
150cm/min	0.8	0.4	0.3	0.3	
	() 30	照射直後に	二測定した	場合	
欠陥深さ 照射速度	10(mm)	20(mm)	30(mm)	40(mm)	50(mm)
30cm/min	2.8	2.4	1.8	0.3	1.3
60cm/min	2.3	0.9	0.8	0.6	1.0
90cm/min	1.7	0.7	0.9	0.4	
120cm/min	1.1	0.6	0.3	0.4	0.4
150cm/min	1.0	0.6	0.5	0.2	
() 3回照9	射して2分	後に測定し	た場合	
欠陥深さ 照射速度	10(mm)	20(mm)	30(mm)	40(mm)	50(mm)
30cm/min	1.8	1.5	0.7	0.3	0.7
60cm/min	1.2	0.5	0.5	0.4	0.6
90cm/min	1.2	0.4	0.3	0.2	
120cm/min	0.8	0.3	0.0	0.3	0.2
150cm/min	0.8	0.3	0.2	0.2	
() 3回照射して4分後に測定した場合					
欠陥深さ 照射速度	10(mm)	20(mm)	30(mm)	40(mm)	50(mm)
30cm/min	1.6	1.3	0.7	0.2	0.4
60cm/min	1.1	0.3	0.5	0.2	0.4
90cm/min	1.1	0.2	0.2	0.1	
120cm/min	0.8	0.1	0.4	0.2	-0.1
150cm/min	0.6	0.2	0.1	0.3	

温度差評価の凡例		
		判定容易
		判定可能
		判定不可能

照射速度 30cm/min、2 回照射直後

照射速度 60cm/min、2 回照射直後

照射速度 120cm/min 、 3 回照射後 4 分間放置後 ()判定不可能

() 判定容易

()判定可能

図-1 各評価におけるサーモ画像例(欠陥深さ 50mm)