液状化前後での砂の静的強度における細粒分の影響

中央大学理工学部

部 正会員

学生会員 鈴木 一義

村端 敬太 前田 和伸

1. はじめに

近年,千葉県東方沖地震(1987年),兵庫県南部地震 (1995年)などで,海岸埋立地を中心に細粒分を含んだ 砂地盤や礫質地盤の液状化に伴う地盤沈下や側方流動 による被害が報告^{1),2)}されている.そこで,本研究では非 塑性細粒分を含んだ砂に対して,非排水静的三軸圧縮 (*CU*)試験を実施し,地震時に大変形を伴う急速破壊を 起こす場合の地盤の強度について検討を行った.

2. 試験試料

図-1 は試料の粒径加積曲線を示したものである.表-1 にはこれら試料の物理特性を示す.本研究で用いた試料 は,河床砂(利根川砂)に F_c=0%~30%まで段階的にまさ 土細粒分(*I*p=6 程度)を配合した試料である.

図-2 は内径 20cm,高さ 20cm の鋼製モールド,上載型バ イブレーター,大型ロートによる中大式最小・最大密度 試験³⁾,及び JIS 法による最小・最大密度を示したもの である.砂の最小・最大間隙率に基づいて計算した限界 細粒分含有率 S^{4} は $S=22.5\% \sim 23.1\%$ と計算され,図-2 に示すように $F_c=10\% \sim 20\%$ 付近で最小・最大乾燥密度 ともにピーク値を示している結果とそれほど隔たって いない.つまり細粒分含有率が限界値S に近づくに従い, 砂粒子同士の骨格形成が失われ,細粒分中に砂粒子が浮 いているような状態となり,砂と比べて密度の低い細粒 分により骨格が支配されるので,乾燥密度は低下傾向を 示し始めると考えられる.

3. 試験方法

試験に用いた供試体はウエットタンピング法で作製 し,196 kPa の背圧を負荷した後,間隙水圧係数 *B*値が 0.95 以上に達することを確認し,98kPa で等方圧密を行 う.その後,非排水静的三軸圧縮(\overline{CU})試験を行うが,一 方は直接 \overline{CU} 試験を行い(ケースA),もう一方は非排水 繰返し履歴を与えた供試体に対して引き続き \overline{CU} 試験を 行った(ケースB).なお,繰返し履歴を与える試験では 間隙水圧がほぼ100%に上昇し,両振幅軸ひずみが10%に 達したことを確認した.

剛治

原 忠

國生

図-1 試料の粒径加積曲線

表-1 試料の物理特性

	F _c (%)	U _c	D 50 (mm)	s (g/cm ³)	_{dmin} (平均值) (g/cm ³)	_{dmax} (平均值) (g/cm ³)	e _{max} (平均値)	e _{min} (平均値)
試料1	0	1.44	0.169	2.696	1.280	1.629	1.106	0.655
試料1a	5	1.68	0.165	2.699	1.310	1.666	1.060	0.620
試料1b	10	2.36	0.158	2.701	1.314	1.746	1.056	0.547
試料1c	20	5.83	0.151	2.706	1.280	1.842	1.114	0.469
試料1d	30	12.2	0.138	2.711	1.173	1.704	1.311	0.591

図-2 中大式及び JIS 法の試料の最小・最大密度

キーワード 液状化 三軸試験 非排水せん断強度 細粒分 砂質土 連絡先:中央大学理工学部土木工学科土質研究室 〒112-8551 東京都文京区春日 1-13-27 Tel:03-3817-1799

4. 試験結果

図-3 は D₄ 70%におけるケース A での偏差応力~軸 ひずみ関係を示したものである. F₆の増加に伴い強度 が低下し,とくに F₆ =10%~20%にかけて急激な強度低下 が生じている.

図-4はケースBでの同様の関係を示したものである. 軸ひずみが15%~20%程度で偏差応力が最大となり,その 後,残留強度が表れている.また, Fcが増加するにつれ, その最大値が大きなひずみで現れる傾向を示している. また,試料1c,1dでは強度はほとんど0に近いこともわ かる.

図-5は,図-3に代表されるケースAの偏差応力~軸ひ ずみ関係において,軸ひずみが15%までの偏差応力の最 大値 q_{max} (以下,最大偏差応力と称する)と F_c の関係で ある. D_r 70%において, $F_c = 0\% ~ 10\%$ までの強度低下が 緩やかであるのに対し, $F_c = 10\% ~ 20\%$ の間の強度低下は 急激である.また, D_r 30%,50%,70%のいずれの試料に おいても, $F_c = 30\%$ の点ではピーク強度がほぼ一定の値 に収束している.

図-6は,図-4に代表されるケースBの偏差応力~軸ひ ずみ関係において,軸ひずみが15%までの偏差応力の最 大値 q_{maxliq}と F_cの関係である. D_r 30%,50%の緩詰め,中 密の試料においては,液状化後の強度はほぼ0である. また, D_r 70%の試料についてはケースAの場合とやや 異なり,強度が一定の割合で低下している.また F_c=20% 以上では,いずれの相対密度の試料においても強度はほ ぼ0に収束することがわかる.

図-5,6の結果から,細粒分を含む砂の非排水せん断強 度は,液状化の前後に関わらず,限界細粒分含有率 S に 近い F_c =20% ~ 30%付近までで,ほぼ最小値に落ち着く

図-4 D_r 70%における偏差応力~軸ひずみ関係(ケース B)

図-5 F_cと最大偏差応力の関係(ケース A)

図-6 F。と最大偏差応力の関係(ケース B)

ことがわかる.これは,図-2 が示すように, F_e=S付近から土粒子骨格が細粒分に支配されることにより,砂粒子のかみ合わせの接点が少なくなり,正のダイレイタンシー特性が発揮されにくくなるためと推察される. 5. **まとめ**

- ・ 細粒分が入ることにより,砂の非排水静的三軸圧縮(*CU*)試験の最大偏差応力(強度)は低下する傾向があることがわかった.また,液状化した状態の砂の*CU*試験においても,細粒分の増加に対して強度は同様な低下傾向を示す.
- Fc=20%~30%付近において,密な試料では強度低下が急激であることや,相対密度によらずせん断強度が
 一定値に収束することから,この付近から土のダイレイタンシー特性が大きく変化することがわかった.

(参考文献): 1)森伸一郎, 沼田淳紀, 境野典夫, 長谷川昌弘: 埋立地の液状化で生じた噴砂の諸特性,土と基礎, Vol.39, No2, No397, pp.17~22, 1991. 2)Ishihara, K.: Geotechnical aspect of the 1995 Kobe earthquake, *14 th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE*, Terzagi Oration, 1997. 3)原忠,國生剛治:砂礫の最小・最大密度に及ぼす影響因子の分析,土木学会論文集, No.778/ -69, pp151-162, 2004 4)Skempton, A.W. and Brogan, J.M.: Experiments on piping in sandy gravels, *Geotechnique*, Vol.44, No3, pp.449-460, 1994.