渦崩壊を利用した微細気泡生成法に関する実験的研究

筑波大学大学院	システム情報工学研究科	学生会員	金子公久
筑波大学	工学システム学類	学生会員	山田麗徳
筑波大学大学院	理工学研究科	学生会員	坂入信之
筑波大学	機能工学系	正会員	京藤敏達

1.はじめに

近年,工学的に有益である微細気泡が注目されて いる.微細気泡は,工学的に有益な物理化学的性質 をもち,それは液中への気体溶解,液中の懸濁物質 除去,生体の生理活性の誘起などがあげられる.そ れらは,水圏環境を考える上で非常に有用であると 考えられる.本研究では,管路内の高速旋回流に不 安定を生じさせることで起こる渦崩壊により微細気 泡を実験的に発生させ,微細気泡発生の条件とその 物理メカニズムを解明することを目的とする.

2.実験

2.1 実験装置

用いた実験装置はタンク中の水をポンプにより循 環させ test section にて旋回流を起こすというもので, ポンプ圧は調節可能である.test section の概略図を 図1に示す.旋回流はアルミ製タービン翼型装置を 用いて発生させた.空気注入孔を通して,注入空気 流量の計測,空気吸い込み口の圧力の計測が可能で ある.また,ノズル出口付近に水中マイクロフォン を設置することで,音圧の計測が可能である.

2.2 微細気泡の生成法

気液二相流体を高速で旋回させることにより,管 路中心に高速で旋回する気体による空洞部が形成さ れる.この高速旋回する流れ場に縮流,開放などの 不安定を与えることにより渦崩壊が発生し,大きな せん断と圧力変動が生じノズル出口付近で微細気泡 が発生することが確認されている.このとき,混入 する空気量による違いで渦崩壊の形状に変化が生じ 過多の空気を混入すると気泡径が大きくなるという 実験結果が得られている(図2参照).

2.3 ノズルによる違い

ノズルによる渦崩壊の様子の変化を調べるため にノズル形状の異なるケースで実験を行った.ここ では,通常のノズル(ノズル A)と出口が円錐状とな るノズル(ノズル B)を扱う(図 3 参照).ノズル形状が によって,渦崩壊の形状が変化することが確認でき た.本実験では,ノズル A に比ベノズル B の方が, 微細気泡がより高密度で発生することが確認されて いるが,その原因を解明するため,それぞれの場合 において旋回流の性質を解析する.

ノズル B

キーワード:微細気泡,渦崩壊,流れの遷移,気泡生成時の音 連絡先:〒305-8577 つくば市天王台 1-1-1 筑波大学大学院 システム情報工学研究科 E-mail:kaneko@surface.kz.tsukuba.ac.jp

図1 test section 概略図

2.4 音圧による旋回流の回転速度の解析

渦崩壊が生じる高速旋回流の回転速度を,可視化 などの既存の方法で測定することは非常に困難であ る.そこで,渦崩壊が生じるとき発生する Vortex Whistle¹⁾と呼ばれる特有の現象に注目した. Robert(1963)らによれば,旋回流1回転に対して1音 が生じるとされる.この特性を利用して,音圧を測 定し,その卓越周波数を算出することで旋回流の回 転速度を測定することを試みた.ノズル形状に関し ては,前出のノズルAとBに対して行った.測定に より得られたスペクトルを図4,5,6に示す.グラ フは順に,ノズルA空気適量,ノズルA空気過多, ノズルB空気適量の場合である.音圧の測定により 得られた周波数は,高速度ビデオで撮影した画像か ら,輝度の変動の周期を計算したもののオーダーと 一致することが確認されている.

3.考察

空気流量の変化に対する渦崩壊の変化が確認され た.流量が 0.43(kg/s)に対し空気流量 0.97(cm²/s)以 上になると,図2で確認されるように渦崩壊の様子 が目で確認できるほど明らかな変化が生じ,生成さ れる気泡径は変化前と比較し非常に大きなものとな ることが確認される.これは,過多の空気により, 渦崩壊がノズル外部で生じたため,旋回流の回転半 径が増加し,回転速度が低下したことに起因すると 考えられる.図4,5の比較からもその様子は確認で きる.図4の場合卓越周波数は446(Hz)であるのに 対し,図5の場合は370(Hz)となる.また,図5の スペクトルは広帯域で値を持つ特性が確認できる. ノズル B の場合,卓越周波数が 537(Hz)となり,ノ ズルAと比べてもさらに高速で旋回すると考えられ る.また,流量によらず,ノズルAと同様の卓越周 波数の領域に(この場合450(Hz)程度)にもう1つのピ ークが確認される.このもう1つの卓越周波数に関 しては,現在理由が不明で,今後さらなる研究が必 要とされる課題である.

参考文献

 Robert C . Chanaud : Experiment Concerning the Vortex Whistle , J . Acoust . Soc . Am , 35 , pp , 953-960 , 1963

2)S. Leibovich : The structure of vortex breakdown , Annu . Rev . Fluid Mech . 10 , pp , 221-246 , 1978