排出土砂に含まれる粘土粒子の拡散沈降モデルの検討

1	は	Ľ	め	に

現在、多くのダム貯水池で堆砂が進行し、ダム機能の 低下や下流域の河床低下などの問題が発生している。解 決策として幾つかの方策が存在するが、自然の洪水流と 共に堆積土砂を下流へ排出させる排砂ゲートや土砂バイ パストンネルを利用したものが、河川流域一帯の総合的 な土砂管理の面からも注目を集めている。

しかし、排砂が実施されると海域において排出土砂中 に含まれる粘土粒子(スメクタイト)に起因する一時的 な濁度上昇が引き起こされてしまう。

そこで、本研究では排出土砂に含まれる粘土粒子の海 域における挙動に着目したモデルを構築し、実際に排砂 が行われている富山県の黒部川河口前面(図-1)を対象 海域として表層における濃度分布の検討を行った。

2. モデル概要

本研究では、平成14年7月に行われた連携排砂を対象として検討を行い、使用するダム排砂に関するデータは国土交通省北陸地方整備局黒部河川事務所より公開されているものを使用した。

(1) 流動モデル

流動計算では、海域の密度構造と河川流入を考慮し、 連続式、運動方程式、水温・塩分の拡散方程式の各方程 式による3次元モデルを使用した。境界条件は、海底は u=v=w=0とし、海表面の鉛直成分はw=0とした。側方方

日本大学大学院	学生会員	○高吉	亮二
日本大学生産工学部	正会員	和田	明
日本大学大学院	学生会員	太田	吉陽

向の外海境界で、流れは1階微分=0、水温,塩分の流入時は外海値が流入し、流出時は1階微分=0とした。

計算領域とした黒部川河口前面の海底地形は、図-1 に示すように急峻な形状を呈しており、富山湾特有の海 底谷も多く存在している。

(2) 拡散沈降モデル

排出土砂に含まれる粘土粒子は、負を帯電しているこ とから河川を流下しているときは互いの電荷同士が反発 しあい吸着しないが、海域に達すると海水中の陽イオン により表面電荷が中和されスキャベンジング^D(生物遺 骸や懸濁物質などと吸脱着を繰り返しながら比較的早い 速度で海底に沈降する現象)を示すと考えられている。

そこで、本研究ではS.L.Clegg and M.Whitfield (1990, 1991)¹⁾が放射性物質の拡散沈降解析で使用したモデル を応用し、排出土砂中に含まれる粘土粒子の海域での挙 動のモデル化を行った。

以下の図-2にモデルの概念図を示す。

図-2 拡散沈降モデル概念図

3. 流動解析

平成 14 年の連携排砂を対象とした拡散沈降解析を行 うにあたり、計算領域における流動場を再現する必要が ある。ここでは、国土交通省北陸地方整備局黒部河川事 務所が公開している連携排砂期間のデータを使用し河川 流量の設定を行った。

(1)計算条件

格子分割は水平方向が、120m×120m~180m×255mの不

キーワード 粘土粒子,3次元流動・拡散沈降モデル,スキャベンジング 連絡先 〒275-8575 千葉県習志野市泉町1-2-1 日本大学大学院生産工学研究科 TEL 047-474-2420 等加間隔格子、鉛直方向が上層 2m~下層 100m の層厚で 最大 23 層に分割した。なお、水温、塩分の水深別初期分 布は JODC 所蔵のデータより、計算領域に最も近い観測点 の過去 10 年間の観測結果を平均したもので設定した。

河川流量は、連携排砂期間において大きく変化することから、本研究では再現性を高めるために連携排砂開始 直後で 429.7m³/s、連携排砂中期で 194.1 m³/s、連携排 砂終了後で 87.3m³/s のように分割して計算を行った。

(2)流動計算結果

連携排砂開始直後の流動計算結果を図-3 に示す。黒 部川河口より大量の河川水が流入し、河口付近で沖合方 向に最大約 35cm/s の流れが見られた。また汀線付近にお いては数 cm/s と弱い流れを示す結果となった。

4. 拡散沈降解析

(1)計算条件

海域への流入量は、黒部川の最下流部に位置する下黒 部橋で観測された SS を使用し連携排砂開始直後で 208.0kg/s、連携排砂中期で297.4kg/s、連携排砂終了後 で35.0kg/sと設定した。また、国土交通省のシミュレー ション²⁰を参考に流入土砂の組成を粘土粒子:土砂小粒 子:土砂大粒子=9:68:23とし、各粒子の沈降速度は 大粒子吸着体と土砂小粒子を 38.9m/day、土砂大粒子は 812.2m/day と設定した。

(2)計算結果

連携排砂開始直後、本計算における計算開始19時間後 の結果を図-4に示す。表層において200mg/1の範囲が 河口から約0.5km沖合まで分布し、20mg/1の範囲は沖合 方向約3.0km、汀線方向に約4.0kmという広範囲に渡っ て分布する結果となった。

5. 再現性の検討

計算結果の再現性を検討するために、ほぼ同時刻の海域における SS の観測値との比較を行った。

図-5 はその結果を示したものであり、相関の計算を 行ったところ R²=0.67 と有意な相関が得られた。

図-5 計算値と観測値との比較

6. まとめ

平成14年7月の連携排砂を対象とした拡散沈降解析に おいて相関を調査した結果、有意な相関を得る事ができ たが、一部において計算値と観測値との間に大きな開き があるところが存在した。

そのような点を改善するために、河川から海域へ負荷 される SS の構成比や連携排砂期間における河川流量と SS との関係を再検討する必要があり、今後も自然現象を 考慮したモデルの構築を進めていきたい。

7. 参考文献

 S. L. Clegg and Michael Whitfield: A generalized model for the scavenging of trace metals in the open ocean-I .Particle cycling, deep-sea Research., Vol. 37, pp. 809-832, 1990.

2) 国土交通省北陸地方整備局黒部河川事務所,海域濁り拡 散・沈降シミュレーションの概要(続報),第12回黒部川ダ ム排砂評価委員会,資料-5,2002.