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1 INTRODUCTION 

The behavior of waves on sloping beaches has received 

intensive study by many scientists and engineers during the 

past ten decades. Primary impacts of the behavior of waves 

are listed as inundation, exacerbation of flooding, beach 

erosion, and salt-water intrusion to rivers and groundwater 

aquifers. These impacts, in turn, cause higher-ordered 

impacts in a wide range of coastal systems. Since there exist 

highly productive ecosystems, large portion of the world 

population, and intensive socioeconomic activities in the 

coastal zone, it is crucial to predict the degree and range of 

the possible impacts of sea level rise and storm surge 

inundation in a wide coastal area. 

 

2 MATHEMATICAL MODEL  
2.1 Basic equations: 

The shallow water equations are used in this model as 

basic equation. 
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Here, Eq. 1 refers the basic equation of momentum and 

continuity equation. Where h is the flow depth; u and v 

indicate flow velocity along x and y direction respectively. 

Also, g refers the acceleration due to gravity. And then, zb is 

the bed elevation.  

In this model time splitting is applied for advection 

phase and non-advection phase. The non-advection phase 

will be calculated using Galerkin’s Finite Element method. 

Here Eq. 2 shows the time splitting condition and here CIP 

denotes a computation scheme to calculate advection phase. 

)~,~,~(

)~,~(

)()(
~

)(
~

)(
~

1

1

hvuCIPh

huCIPu

yvhxuh
t
hh

zh
y

g
t
vv

zh
x

g
t
uu

h
n

u
n

nnnn
n

b
n

n

b
n

n

=

=

∂∂−∂∂−=
∆
−

+
∂
∂−=

∆
−

+
∂
∂−=

∆
−

+

+

  (2) 

2.2 Calculation of Non-advection term: 

To reduce the computation time and simplify the matrix, 

Shape function (φ ) and Weight function (ψ ) are utilized as 

follows. Figure1 shows those functions. 

 

 

 

 

 

Figure 1 Shape function and weight function. 

 

Furthermore, within the water area, where no boundary 

exits, the shape and weight functions will be Eq. 3. Figure 2 

is showing inner water grid point in two-dimension scheme. 
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Figure 2 Showing grid point within the water area. 

In the two-dimension scheme the grid points 
at the boundary is shown in Figure 3. The weight 
functions at different boundary condition are 
shown in Eq. 4. 
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Figure 3 Showing different grid points at boundary. 
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From Eq. 1 applying Galernkin’s method, considering left 

hand side as A1, will give Eq. 5 

(A1) 
t
u
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Where 
t
uU

∂
∂=

.  

Eq. 6 can be obtained from Eq. 5 
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Where ∫=
A

ijij dAA ψφ  

From Eq. 1 and taking right hand side as B1, will give Eq. 7 
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Eq. 8 can be obtained from Eq. 7 
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Where ∫ ∂
∂

=
A

i
j

ij dAB ψ
ξ
φ  

From Eq. 1 and taking left hand side of the continuity 

equation will give Eq. 9 
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Eq. 10 can be obtained from Eq. 9 
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Where ∫ ∂
∂

=
A

i
j

ijk dAB ψ
η
φ  

From Eq. 1 and taking horizontal component of the 

continuity equation will give Eq. 11 
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Eq. 12 can be obtained from Eq. 11 
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Where ∫ ∂
∂

=
A

i
k

jijk dAB ψ
ξ
φφ  

From Eq. 1 and taking vertical component of the continuity 

equation will give Eq. 13 
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Eq. 13 is the matrix forming of the Eq. 14 
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Where ∫ ∂
∂

=
A

i
k

jijk dAC ψ
η
φφ  

In this way after forming the matrix numerical 

simulation will be done. Results of the numerical simulation 

will be shown at the time of presentation.  
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