超大型浮体式構造物の構造応答計算における 構造モデル化の影響

防衛大学校	機械システム工学科	正会員	瀨戸 秀幸
防衛大学校	研究科	非会員	ソムポップ・チュアイシーヌアン

1. 緒言

現在,空港等陸上施設の環境,騒音対策に鑑み,沿 岸海域の有効活用のための超大型浮体式構造物が構 想されている.1 km 超と想定される浮体式構造物で は,波による弾性挙動の把握が不可欠であるが,実績 もなく,水槽実験も限定されるため,多くを理論解析 に頼らざるを得ず,メガフロート PJ 等において各種 の解析プログラムが開発されてきている.しかし,そ の殆どは構造物を平板モデル近似して全体挙動の推 定を行う解析法か,全体挙動の結果が知れたとしてそ の一部のみを流用して全体または部分構造解析を試 みる2段階解析法であり、全体的弾性挙動から構造内 力まで一貫解析できるものは少ない.

本研究では、解析規模の制約から超大型浮体式構造 物に必要となる整合的な多段階解析法の開発に資す るべく,一貫解析可能なメガフロート詳細3次元弾性 応答解析法を用い,1段階で計算可能な1km級モデ ルに対して,3次元モデル,簡略モデル等各モデルに 対する一貫構造応答解析を実施してモデル化の違い やメッシュ分割の違い、混合モデルによる弾性挙動の 差異の把握に加え,構造内力の検討も試みる.

2. 構造·水波連成解析

本報で用いる詳細3次元弾性応答解析法は,実機に 近い3次元構造モデルを取り扱うべく,構造解析部に 有限要素法(NASTRAN),水波解析部に領域分割型ハ イブリッド有限・無限要素法 , 構造・水波連成解析部 にモード法を用いる解析法である.

超大型浮体が規則的入射波中で微小振幅の定常周 期運動をしている場合,モード表示の運動方程式は,

$$\left[-\omega^{2} \left(\left[\hat{m}_{lk} \right] + \left[\hat{M}_{lk} \right] \right) + i \omega \left(\left[\hat{n}_{lk} \right] + \left[\hat{N}_{lk} \right] \right) + \left(\left[\hat{k}_{lk} \right] + \left[\hat{S}_{lk} \right] \right) \right] \left\{ c_{k} \right\} = \left\{ \hat{E}_{l} \right\}$$
(1)

ここに, $[\hat{m}_{lk}]$, $[\hat{n}_{lk}]$, $(\left[\hat{k}_{lk}
ight]+\left[\hat{S}_{lk}
ight])$ はそれぞれモード 表示の慣性行列,減衰行列,剛性+浮力復原行列,また $|\hat{M}_{n}|, \hat{N}_{n}|$ および \hat{E}_{l} はモード表示の付加慣性行列, 造波減衰行列および波強制力ベクトルで,水波解析に より決定される. $\{c_k\}$, k=1,2,...は, 未定のモード 座標で、流体影響として浮力復原力のみ考慮したとき の固有モードベクトル $\{\Psi_i\}_k$, k = 1, 2, ...を介して, FEM による一般化節点変位ベクトル $\{d_i\}$ とつぎのよ うに関係付けられている.

キーワード 超大型浮体,メガフロート,構造応答解析,一段階解析

$$\left\{d_{j}\right\} = \left[\left\{\Psi_{j}\right\}_{1}, \cdots, \left\{\Psi_{j}\right\}_{k}, \cdots\right]\left\{c_{k}\right\} \equiv \left[\Psi_{jk}\right]\left\{c_{k}\right\}$$
(2)

式(1)を解いてモード座標 $\{c_k\}$ が求まれば,式(2)より 一般化節点変位ベクトル $\left\{ d_{i}
ight\}$ が決定される.それらを 要素に戻すことにより構造内力が同時に計算できる.

3. 構造モデル化

本詳細 3 次元解析法の強みは弾性平板だけでなく 3 次元構造モデルの構造応答解析ができ,構造モデル化 の違いによる応答結果の違いを同一ベースで捕捉でき, モデルの等価性についての定量的な判定を可能にして いる点である.本報では,Fig.2に示す実機を想定した 16 個の同一サイズ (300m×60m) のユニットより構成 される開口部のない(1200m×240m×3m/1m)の 3 次元板 骨浮体構造を例に検討する.ただし,デッキ・ボトム の板厚は15mm 縦・横およびサイドシェル板厚は9mm とし,1ユニットの桁配置として Fig.3 を仮定した.

Fig.3 Wall arrangement and FEM model for a 300m unit

連絡先 〒239-8686 神奈川県横須賀市走水 1-10-20 防衛大学校機械システム工学科 .046-841-3801 (内線 3435) E-mail : seto@nda.ac.jp 対応する 3 次元モデルの有限要素メッシュ分割 (1 ユニット相当)の一部を Fig.3 に示す.板要素の剛性 は,通常の鋼板の値を用い,モデルの質量は,構造重 量相当する重量を板要素に均等に分布させた.

比較する平板モデルは,桁構成を考慮した直交異方 性を考慮するも,せん断変形を無視して断面形状から 単純換算した剛性を用い,質量は桁との交点に分布さ せたモデルを試み,比較計算により全体挙動を概略等 価にするための修正係数も求める.以上の検討を踏ま え,主要部に3次元モデル,残りを等価平板モデル近 似,接合部に剛梁近似を用いる超大規模解析用の混合 モデルの可能性も併せて検討する.

4.考察

Fig.4 に,一例として,水深 20m,向かい波(=0°), 波周期 6.3 秒($\lambda/L=0.05$),の入射波中での 3 次元板骨 構造モデルの構造応答振幅の解析結果を鳥瞰図で示 す.(振幅=($\sqrt{real^2 + imag.^2}$)/ ζ_a ,)典型的な平板モデル の場合と同様,波上側および波下側端部で大きく,浮 体中央部には隣接部による影響のため相殺された規 則的な変動が残るという傾向を示している.

一方,単純近似の平板モデルの場合,傾向は類似な るも,定量的には3次元モデルの結果と異差が見られ た.それ故,従来殆ど検討されてきていないが,簡略 計算の実機への適用や多段階解析との併用に際して は,どのような等価な平板モデルを設定するかが計算 精度を担保するものとして重要になる.

本研究では等価平板モデルを判定する手続きとし て,静的な等価性として剛性を,動的な等価性として 質量分布,引いては固有値,固有モードを調整する方 式に従って検証計算を行った.

静的等価性は,計算例の場合,直交2方向のヤング 率の調整で大略実現できるが,動的等価性は3次元モ デルの固有振動数に近づくよう,平板モデルの質量分 布を反復調整するという面倒な操作を要した.Fig.5 はその結果の一部で,横方向の振動の節数をパラメー タに,縦方向の振動の節数と対応する固有振動数の関 係をプロットしたものである.Fig.6 は前例と同じ条 件での等価平板モデルと3次元モデルとの浮体底面 中心線の弾性応答振幅の比較である.Fig.7 は入射角 を 30°のときの比較である.なお,図の縦軸は拡大 して描いているので注意されたい.モデル調整により 良く一致した結果が得られている.

同ーモデルによる 1 段階解析が不可能な規模に対 しては,計算量低減のため,主要部に3次元モデル, 残りに等価平板モデルを用いる混合モデルによる構 造応答解析が考えられるが,部分毎だけでも等価性を 担保することは実務上不可欠であり,本研究で提案し た等価モデルの決定手続きは有効である.さらに同手 続きは多段階解析の精度担保への適用も可能である.

- 5. 結言
- 1) 超大型浮体実機を想定した 3 次元板骨構造モデル による構造応答解析を実施した.
- 2) 剛性と質量分布調整により 3 次元モデルと等価な 直交異方性平板モデルの決定手続きを提案した.
- 3) 同モデルは、全体挙動の解析では3次元モデルによる結果とよい一致を示している.しかし、せん断変形考慮は入ってないため、部分挙動の再現には一段の工夫が必要であろう.
- ハイブリッド構造モデルによる1段階解析は有望と思われ,検討を進めたい.

参考文献

 瀬戸秀幸,太田 真,河角省治,越智真弓:規則 波中における超大型浮体構造物の構造応答解析法 に関する研究(第一報),日本造船学会論文集,第 192号,pp.653-660,2002/12

Fig.4 Bird-eye view of displacement amplitude for a 1200m rectangular VLFS

Fig.6 Comparison among vertical displacements amplitude at centerline of a rectangular VLFS

Fig.7 Comparison among vertical displacements amplitude at centerline of a rectangular VLFS