明星大学	正会員	鈴木	博之
明星大学大学院	学生員	岡本	陽介
明星大学	学生員	浅野	友之

<u>1.はじめに</u> 本研究では、軽量で、施工が容易なガラス繊維強化プラスチック(以下、GFRPと記す) をき裂を有する鋼部材に適用した時の基本的特性について実験的に検討する。

<u>2.試験片形状</u> よびき裂詳細を図-1に示す。試験片 は、100mm×9mm×1000mm であり、試 験片中央には、長さ25mm、幅0.4mmの き裂を設けた。また、標点間距離は 600mm とした。き裂部に貼付した GFRP 寸法を表-1、鋼板とGFRP の機 械的性質を表-2 に示す。なお、GFRP の1枚の厚さは、1.2mm である。

<u>3.実験方法</u>実験には、容量 500kNの万能試験機を使用し、載荷 中の GFRP と鋼板のひずみを測定し た。

<u>4.実験結果および考察</u>図-2 にGFRPの層数がt=1のときの応力-ひずみ曲線を示す。図中の矢印は GFRP が剥離したところを示してい る。図-2 に示した GC 110-1、GC 125-1、 GC 150-1、GC 310-1の応力-ひずみ曲

線に有意な差はない。GFRP の幅が、10mm、25mm、50mm と増加し ても GFRP の剥離荷重に違いは認められず、また、GFRP の長さが 300mm の場合も、100mm の場合と差はなく、いずれの試験片にお いても鋼板の応力が降伏点に達する前に GFRP が剥離している。 したがって、いずれの試験片も降伏後の応力-ひずみ曲線は GC 000-0 と一致しており、補強試験片と無補強試験片の応力-ひず み曲線に差はない。

図-3 に GFRP の層数が t =2 のときの応力-ひずみ曲線を示す。 図-3 に示した GC 310-2、GC 325-2、GC 350-2 の応力-ひずみ曲線

に有意な差はない。また、GFRPの剥離時の荷重とGFRPの幅に相関がないのは、GFRPの接着作業による影響であ

キーワード:GFRP、き裂

連絡先:〒191-8506 東京都日野市程久保 2-1-1,明星大学理工学部土木工学科 TEL/FAX:042-591-9645

t(層数)***

図-1 試験片形状

表 - 1 試験片名称および GFRP 寸法

0

100

100

100

300

300

300

300

:b (mm)はGFRPの幅

:I (mm)はGFRPの長さ :t GFRPの層数

試験片名称 b (mm)* l(mm)**

0

10

25

50

10

10

25

50

GC 000-0

GC 110-1

GC 125-1

GC 150-1

GC 325-2

GC

GC 310-1

GC 310-2

350-2

表-2 機械的性質

	鋼板	GFRP
弾性係数(MPa)	2.1×10^{5}	1.4×10^{4}
降伏点(MPa)	299	
引張強さ (MPa)	435	201
伸び(%)	28	

ると考えられる。したがって、GFRP の接着は施工に大きく依存するので、施工する際には十分な配慮が必要である。

図-4 に GFRP の層数が t =1 のときの載荷荷重 100kN の場合 のき裂断面上の応力分布を示す。図-4 より、き裂先端からの 距離が 3mm の位置の応力は、GC 110-1 は、GC 000-0 より最大で 8N/mm²程度低下しており、GC 125-1 の場合は最大で 13 N/mm² 程度、GC 310-1 の場合は最大 12 N/mm²程度低下していること がわかる。また、GFRP の 1 =100mm と I=300mm の相違による応力 低減に違いは認められない。鋼材の 1/15 の弾性係数しかない GFRP を 1 層き裂部に貼付することによって、き裂先端の応力 を約 4.5%低減することができ、き裂の補強材として使える 可能性があるように思われる。

図-5 に GFRP の層数が t =2 のときの載荷荷重 100kN の場合 のき裂断面上の応力分布を示す。図-5 より、き裂先端からの 距離が 3mm の位置の応力は、GC 310-2 は GC 000-0 より最大で 18 N/mm²程度低下しており、GC 325-2 の場合は最大で 20 N/mm² 程度低下していることがわかる。GFRP を 2 層き裂部に貼付す ることによって、き裂先端の応力は約 12.2%低減したことに なる。そこで、GFRP の層数による効果を比較をする。図-4 の GC310-1 と図-5 の GC 310-2 では、GC310-1 より GC 310-2 の方 がき裂先端からの距離が 3mmの位置の応力が 6N/mm²程度低 下している。したがって、GFRP を多層に貼付することにより 応力低減効果が高くなることが期待できる。

図-6 は、鋼板と GFRP の間に生じる層間せん断力である。図 の横軸は GFRP き裂中央からの距離であり、縦軸は鋼板と GFRP 間のせん断力である。層間せん断力は、中央からの距離が 30mm ~ 110mm においては、ほぼ 0 であり、中央部と先端部で大 きくなっているが、GFRP の中央部の方が先端部より層間せん 断力が大きく GFRP は中央から剥離したものと推察できる。

<u>5.まとめ</u>本実験では、長さ 25mm、幅 0.4mm のき裂を有 する鋼板の補強材に GFRP を用いることの可能性を検討する ために、引張試験を行った。得られた知見は以下の通りであ る。

- 1. き裂を有する鋼板に GFRP を貼付することにより、き裂先 端近傍の応力を低減する効果が認められた。
- 2. GFRP を多層に貼付することにより、より一層の補強効果 が期待できる。
- GFRP の長さ | =100mm と I=300mm の相違による応力の低 減効果に違いは認められなかった。
- GFRP は鋼板が降伏する前に剥離してしまうことがわかった。したがって、大変形を伴う破壊に対する補強には適さないが、疲労のように大きな変形を伴わない破壊の補強には有用であると考えられる。

